-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathimage_train.py
194 lines (171 loc) · 5.94 KB
/
image_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
Train a diffusion model on images.
"""
import argparse
import torch.distributed as dist
from pretrained_diffusion import dist_util, logger
from pretrained_diffusion.image_datasets_mask import load_data_mask
from pretrained_diffusion.image_datasets_sketch import load_data_sketch
from pretrained_diffusion.image_datasets_depth import load_data_depth
from pretrained_diffusion.resample import create_named_schedule_sampler
from pretrained_diffusion.script_util import (
model_and_diffusion_defaults,
create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,)
from pretrained_diffusion.train_util import TrainLoop
import torch
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
options=args_to_dict(args, model_and_diffusion_defaults(args.super_res).keys())
model, diffusion = create_model_and_diffusion(**options)
options=args_to_dict(args)
if dist.get_rank() == 0:
logger.save_args(options)
##### scratch #####
if args.model_path:
print('loading decoder')
model_ckpt = dist_util.load_state_dict(args.model_path, map_location="cpu")
for k in list(model_ckpt.keys()):
if k.startswith("transformer") and 'transformer_proj' not in k:
# print(f"Removing key {k} from pretrained checkpoint")
del model_ckpt[k]
if k.startswith("padding_embedding") or k.startswith("positional_embedding") or k.startswith("token_embedding") or k.startswith("final_ln"):
# print(f"Removing key {k} from pretrained checkpoint")
del model_ckpt[k]
model.decoder.load_state_dict(
model_ckpt , strict=True )
if args.encoder_path:
print('loading encoder')
encoder_ckpt = dist_util.load_state_dict(args.encoder_path, map_location="cpu")
model.encoder.load_state_dict(
encoder_ckpt , strict=True )
model.to(dist_util.dev())
schedule_sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
########### dataset selection
logger.log("creating data loader...")
if args.mode == 'ade20k' or args.mode == 'coco':
data = load_data_mask(
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
train=True,
low_res=args.super_res,
uncond_p = args.uncond_p,
mode = args.mode,
random_crop=True,
)
val_data = load_data_mask(
data_dir=args.val_data_dir,
batch_size=args.batch_size//2,
image_size=args.image_size,
train=False,
deterministic=True,
low_res=args.super_res,
uncond_p = 0. ,
mode = args.mode,
random_crop=False,
)
elif args.mode == 'depth' or args.mode == 'depth-normal':
data = load_data_depth(
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
train=True,
low_res=args.super_res,
uncond_p = args.uncond_p,
mode = args.mode,
random_crop=True,
)
val_data = load_data_depth(
data_dir=args.val_data_dir,
batch_size=args.batch_size//2,
image_size=args.image_size,
train=False,
deterministic=True,
low_res=args.super_res,
uncond_p = 0. ,
mode = args.mode,
random_crop=False,
)
elif args.mode == 'coco-edge' or args.mode == 'flickr-edge':
data = load_data_sketch(
data_dir=args.data_dir,
batch_size=args.batch_size,
image_size=args.image_size,
train=True,
low_res=args.super_res,
uncond_p = args.uncond_p,
mode = args.mode,
random_crop=True,
)
val_data = load_data_sketch(
data_dir=args.val_data_dir,
batch_size=args.batch_size//2,
image_size=args.image_size,
train=False,
deterministic=True,
low_res=args.super_res,
uncond_p = 0. ,
mode = args.mode,
random_crop=False,
)
logger.log("training...")
TrainLoop(
model,
options,
diffusion,
data=data,
val_data=val_data,
batch_size=args.batch_size,
microbatch=args.microbatch,
lr=args.lr,
ema_rate=args.ema_rate,
log_interval=args.log_interval,
save_interval=args.save_interval,
resume_checkpoint=args.resume_checkpoint,
use_fp16=args.use_fp16,
fp16_scale_growth=args.fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=args.weight_decay,
lr_anneal_steps=args.lr_anneal_steps,
finetune_decoder = args.finetune_decoder,
mode = args.mode,
use_vgg = args.super_res,
use_gan = args.super_res,
uncond_p = args.uncond_p,
super_res = args.super_res,
).run_loop()
def create_argparser():
defaults = dict(
data_dir="",
val_data_dir="",
model_path="",
encoder_path="",
schedule_sampler="uniform",
lr=1e-4,
weight_decay=0.0,
lr_anneal_steps=0,
batch_size=1,
microbatch=-1, # -1 disables microbatches
ema_rate="0.9999", # comma-separated list of EMA values
log_interval=200,
save_interval=20000,
resume_checkpoint="",
use_fp16=False,
fp16_scale_growth=1e-3,
super_res=0,
sample_c=1.,
sample_respacing="100",
uncond_p=0.2,
num_samples=1,
finetune_decoder = False,
mode = "",
)
defaults.update(model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()