-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_learning.py
69 lines (54 loc) · 1.74 KB
/
run_learning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# This file is part of holohover-sysid.
#
# Copyright (c) 2024 EPFL
#
# This source code is licensed under the BSD 2-Clause License found in the
# LICENSE file in the root directory of this source tree.
from datetime import datetime
import os
import shutil
import torch
from src.params import Params
from src.holohover_dataset import HolohoverDataset
from src.holohover_model import HolohoverModel
from src.learn import Learn
from src.plot import Plot
def main():
# pytorch device and random seed
# if torch.cuda.is_available():
# dev = 'cuda:0'
# else:
# dev = 'cpu'
dev = 'cpu'
torch.set_num_threads(4)
device = torch.device(dev)
torch.manual_seed(0)
# load parameters
params = Params()
# create directory
t = datetime.now()
dir_name = t.strftime('%Y_%m_%d-%H_%M_%S')
params.dir_path = os.path.join('models', dir_name)
if os.path.exists(params.dir_path):
shutil.rmtree(params.dir_path)
os.mkdir(params.dir_path)
# init. model
model = HolohoverModel(params=params, device=device)
params.set_model_params(model, 'model_params_init')
# init. base learner
dataset = HolohoverDataset(params['data']['experiment'], params['learning_params']['encoder_length'] + params['learning_params']['prediction_length'])
ld = Learn(params=params, dataset=dataset, model=model, device=device)
# learn dynamics
ld.optimize()
# plot results
plot = Plot(params=params, model=model, learn=ld, device=device)
plot.greyModel()
plot.paramsSig2Thrust()
plot.paramsVec()
plot.dataHistogram()
# save model and parameters
ld.saveModel()
params.set_model_params(model, 'model_params')
params.save()
if __name__ == '__main__':
main()