-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
352 lines (272 loc) · 11.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
from __future__ import print_function
import os
# import nni
import time
import torch
import logging
import argparse
import torchvision
import random
import torch.nn as nn
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torchvision
#Different commands can be selected for different datasets
from birds_get_tree_target_2 import get_order_family_target
#from air_get_tree_target_2 import get_order_family_target
#from cars_get_tree_target_2 import get_order_family_target
import torchvision.transforms as transforms
#from Triresnet1 import tri_resnet50
from octresnet1 import oct_resnet50
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
BATCH_SIZE = 64
#Hiden_Number = 600
lr = 0.1
nb_epoch = 100
criterion = nn.CrossEntropyLoss()
criterion_NLLLoss = nn.NLLLoss()
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomCrop(224, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
transform_test = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
trainset = torchvision.datasets.ImageFolder(root='/train/images', transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=16, drop_last=True)
testset = torchvision.datasets.ImageFolder(root='/test/images', transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True, num_workers=16, drop_last=True)
print('==> Building model..')
net = oct_resnet50(pretrained=False)
parameter=torch.load('/oct_resnet50.pth')
parameter = {k: v for k, v in parameter.items() if k not in ['fc.weight', 'fc.bias']}
net.load_state_dict(parameter)
model_dict =net.state_dict()
model_dict.update(parameter)
net.load_state_dict(model_dict)
class model_bn(nn.Module):
def __init__(self, model):
super(model_bn, self).__init__()
self.features_2= nn.Sequential(model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.max = nn.MaxPool2d(kernel_size=7, stride=7)
self.convz=nn.Conv2d(in_channels=512, out_channels=512, kernel_size=7, stride=1, padding=0).to(device)
self.convl=nn.Conv2d(in_channels=256, out_channels=256, kernel_size=14, stride=1, padding=0).to(device)
self.features_h = nn.Sequential(
nn.BatchNorm1d(2048),
#nn.Dropout(0.5),
nn.Linear(2048, 512),
nn.BatchNorm1d(512),
nn.ELU(inplace=True),
#nn.Dropout(0.5),
#nn.Linear(feature_size, classes_num),
).to(device)
self.features_z = nn.Sequential(
nn.BatchNorm1d(512),
#nn.Dropout(0.5),
nn.Linear(512, 200),
nn.BatchNorm1d(200),
nn.ELU(inplace=True),
#nn.Dropout(0.5),
#nn.Linear(feature_size, classes_num),
).to(device)
self.features_l = nn.Sequential(
nn.BatchNorm1d(256),
#nn.Dropout(0.5),
nn.Linear(256, 100),
nn.BatchNorm1d(100),
nn.ELU(inplace=True),
#nn.Dropout(0.5),
#nn.Linear(feature_size, classes_num),
).to(device)
self.classifier_1 = nn.Sequential(
nn.Linear(812, 13),
nn.Softmax(1)
)
self.classifier_2 = nn.Sequential(
#nn.Dropout(0.2),
nn.Linear(584, 38),
nn.Softmax(1)
)
self.classifier_3 = nn.Sequential(
#nn.Dropout(0.2),
nn.Linear(256, 200),
nn.Softmax(1)
)
def forward(self, x, targets):
x = self.features_2(x)
#print(x[0].size())
x_h=self.max(x[0])
x_z=self.convz(x[1])
x_l=self.convl(x[2])
x_h = x_h.view(x_h.size(0), -1)
x_z = x_z.view(x_z.size(0), -1)
x_l = x_l.view(x_l.size(0), -1)
x_h = self.features_h(x_h) # N * 512
x_z = self.features_z(x_z)
x_l = self.features_l(x_l)
x_h1 = x_h[:, 0:128]
x_h2 = x_h[:,128:256]
x_h3 = x_h[:,256:512]
order_input = torch.cat([x_h1, x_h2.detach(),x_h3.detach(),x_l.detach(),x_z.detach()],1)
family_input = torch.cat([x_h2,x_h3.detach(),x_z.detach()],1)
species_input = x_h3
#---------------------------------------------------------------------------------------
order_targets, family_targets= get_order_family_target(targets)
#---------------------------------------------------------------------------------------
order_out = self.classifier_1(order_input)
ce_loss_order = criterion_NLLLoss(torch.log(order_out), order_targets) # 13
#---------------------------------------------------------------------------------------
family_out = self.classifier_2(family_input)
ce_loss_family = criterion_NLLLoss(torch.log(family_out), family_targets) # 38
#---------------------------------------------------------------------------------------
species_out = self.classifier_3(species_input)
ce_loss_species = criterion_NLLLoss(torch.log(species_out), targets)
#---------------------------------------------------------------------------------------
ce_loss = ce_loss_order + ce_loss_family + ce_loss_species
return ce_loss, [species_out,targets], [family_out, family_targets],\
[order_out, order_targets]
use_cuda = torch.cuda.is_available()
net = model_bn(net)
if use_cuda:
net.classifier_1.cuda()
net.classifier_2.cuda()
net.classifier_3.cuda()
net.features_2.cuda()
net.features_h.cuda()
net.features_z.cuda()
net.features_l.cuda()
net.classifier_1 = torch.nn.DataParallel(net.classifier_1)
net.classifier_2 = torch.nn.DataParallel(net.classifier_2)
net.classifier_3 = torch.nn.DataParallel(net.classifier_3)
net.features_2 = torch.nn.DataParallel(net.features_2)
net.features_h = torch.nn.DataParallel(net.features_h)
net.features_z = torch.nn.DataParallel(net.features_z)
net.features_l = torch.nn.DataParallel(net.features_l)
cudnn.benchmark = True
def train(epoch, net, trainloader, optimizer):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
order_correct = 0
family_correct = 0
species_correct = 0
order_total = 0
family_total = 0
species_total = 0
idx = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
idx = batch_idx
inputs, targets = inputs.cuda(), targets.cuda()
optimizer.zero_grad()
inputs, targets = Variable(inputs), Variable(targets)
# out, ce_loss = net(inputs, targets)
ce_loss, \
[species_out, species_targets], \
[family_out, family_targets], \
[order_out, order_targets] = net(inputs, targets)
loss = ce_loss
loss.backward()
optimizer.step()
train_loss += loss.item()
_, order_predicted = torch.max(order_out.data, 1)
order_total += order_targets.size(0)
order_correct += order_predicted.eq(order_targets.data).cpu().sum().item()
_, family_predicted = torch.max(family_out.data, 1)
family_total += family_targets.size(0)
family_correct += family_predicted.eq(family_targets.data).cpu().sum().item()
_, species_predicted = torch.max(species_out.data, 1)
species_total += species_targets.size(0)
species_correct += species_predicted.eq(species_targets.data).cpu().sum().item()
train_order_acc = 100. * order_correct / order_total
train_family_acc = 100. * family_correct / family_total
train_species_acc = 100. * species_correct / species_total
train_loss = train_loss / (idx + 1)
print('Iteration %d, train_order_acc = %.5f,train_family_acc = %.5f,\
train_species_acc = %.5f, train_loss = %.6f' % \
(epoch, train_order_acc, train_family_acc, train_species_acc, train_loss))
return train_order_acc, train_family_acc, train_species_acc, train_loss
def test(epoch, net, testloader, optimizer):
net.eval()
test_loss = 0
order_correct = 0
family_correct = 0
species_correct = 0
order_total = 0
family_total = 0
species_total = 0
idx = 0
for batch_idx, (inputs, targets) in enumerate(testloader):
with torch.no_grad():
idx = batch_idx
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
inputs, targets = Variable(inputs), Variable(targets)
# out, ce_loss = net(inputs,targets)
ce_loss, \
[species_out, species_targets], \
[family_out, family_targets], \
[order_out, order_targets] = net(inputs, targets)
test_loss += ce_loss.item()
_, order_predicted = torch.max(order_out.data, 1)
order_total += order_targets.size(0)
order_correct += order_predicted.eq(order_targets.data).cpu().sum().item()
_, family_predicted = torch.max(family_out.data, 1)
family_total += family_targets.size(0)
family_correct += family_predicted.eq(family_targets.data).cpu().sum().item()
_, species_predicted = torch.max(species_out.data, 1)
species_total += species_targets.size(0)
species_correct += species_predicted.eq(species_targets.data).cpu().sum().item()
test_order_acc = 100. * order_correct / order_total
test_family_acc = 100. * family_correct / family_total
test_species_acc = 100. * species_correct / species_total
test_loss = test_loss / (idx + 1)
print('Iteration %d, test_order_acc = %.5f,test_family_acc = %.5f,\
test_species_acc = %.5f, test_loss = %.6f' % \
(epoch, test_order_acc, test_family_acc, test_species_acc, test_loss))
return test_order_acc, test_family_acc, test_species_acc
def cosine_anneal_schedule(t):
cos_inner = np.pi * (t % (nb_epoch)) # t - 1 is used when t has 1-based indexing.
cos_inner /= (nb_epoch)
cos_out = np.cos(cos_inner) + 1
return float(0.1 / 2 * cos_out)
optimizer = optim.SGD([
{'params': net.classifier_1.parameters(), 'lr': 0.1},
{'params': net.classifier_2.parameters(), 'lr': 0.1},
{'params': net.classifier_3.parameters(), 'lr': 0.1},
{'params': net.features_h.parameters(), 'lr': 0.1},
{'params': net.features_z.parameters(), 'lr': 0.1},
{'params': net.features_l.parameters(), 'lr': 0.1},
{'params': net.features_2.parameters(), 'lr': 0.01},
],
momentum=0.9, weight_decay=5e-4)
if __name__ == '__main__':
try:
# main(params)
max_val_acc = 0
for epoch in range(nb_epoch):
optimizer.param_groups[0]['lr'] = cosine_anneal_schedule(epoch)
optimizer.param_groups[1]['lr'] = cosine_anneal_schedule(epoch)
optimizer.param_groups[2]['lr'] = cosine_anneal_schedule(epoch)
optimizer.param_groups[3]['lr'] = cosine_anneal_schedule(epoch)
optimizer.param_groups[4]['lr'] = cosine_anneal_schedule(epoch)
optimizer.param_groups[5]['lr'] = cosine_anneal_schedule(epoch)
optimizer.param_groups[6]['lr'] = cosine_anneal_schedule(epoch) / 10
train(epoch, net, trainloader, optimizer)
test_order_acc, test_family_acc, test_species_acc = test(epoch, net, testloader, optimizer)
if test_species_acc > max_val_acc:
max_val_acc = test_species_acc
print("max_val_acc ==", max_val_acc)
except Exception as exception:
logger.exception(exception)
raise