Skip to content

Latest commit

 

History

History
20 lines (16 loc) · 1.36 KB

filter.md

File metadata and controls

20 lines (16 loc) · 1.36 KB

Filter out low-quality images and detect artifacts

Diffusion process may induce low-quality images, and harmful artifacts or regions. In this stage, we use clip directional similarity metric and segmentation models to gradually filter out harmful synthetic samples and artifact regions.

Step 1: Filter out low-quality images

Please run the following command to filter out low-quality images.

cd filter
python filter.py --image-dir-1 <> --image-dir-2 <> --save-image-dir <> --dis-image-dir <>> --text-path-1 <>> --text-path-2 <>

--image-dir-1 and --image-dir-2 are directories to original and synthetic images. Then the high-quality images will be stored in --save-image-dir, low-quality images will be filtered out in --dis-image-dir

Step 2: Detect artifacts region

Please run the following command to detect artifact regions with segmentation model.

python detector.py --cnofig <config> --checkpoint <checkpoint> --meta_file_path <> --real-img-path <> --real-label-path <> --syn-img-path <> --object-mask-path <> --filtered-label-path <>

We use the classical pre-trained Upernet-R101 model to calculate per-pixel loss on real images and synthetic image, and then filter out noisy synthetic regions. At last, the filtered semseg label will be stored in --filtered-label-path