You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When trying to train the model using our customised dataset, following instruction as indicated in PaddleClas/docs/en/PULC /PULC_person_attribute_en.md. I got the error as below,. lease let me know what else I need to modify. Than you
3.3 Training succeeds.
python -m paddle.distributed.launch
--gpus="0"
tools/train.py
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_myData.yaml
Thank you for sharing the code.
When trying to train the model using our customised dataset, following instruction as indicated in PaddleClas/docs/en/PULC /PULC_person_attribute_en.md. I got the error as below,. lease let me know what else I need to modify. Than you
3.3 Training succeeds.
python -m paddle.distributed.launch
--gpus="0"
tools/train.py
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_myData.yaml
3.4 Evaluation succeeds.
python tools/eval.py
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_myData.yaml
-o Global.pretrained_model="output/best_model/model.pdparams"
3.5 Inference failed.
python tools/infer.py
-c ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_myData.yaml
-o Global.pretrained_model="output/best_model/model.pdparams"
ppcls ERROR: Exception occured when parse line: deploy/images/PULC/person_attribute/090007.jpg with msg: list index out of range
The file PPLCNet_x1_0_myData.yaml is shown below, which is based ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0.yaml with a few modifications:
------------- ./ppcls/configs/PULC/person_attribute/PPLCNet_x1_0_myData.yaml -------------
global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 10
print_batch_step: 10
use_visualdl: False
used for static mode and model export
image_shape: [3, 256, 192]
save_inference_dir: "./inference"
use_multilabel: True
model architecture
Arch:
name: "PPLCNet_x1_0"
pretrained: True
use_ssld: True
class_num: 9
#class_num: 26
loss function config for traing/eval process
Loss:
Train:
- MultiLabelLoss:
weight: 1.0
weight_ratio: True
size_sum: True
Eval:
- MultiLabelLoss:
weight: 1.0
weight_ratio: True
size_sum: True
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.01
warmup_epoch: 5
regularizer:
name: 'L2'
coeff: 0.0005
data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/myData/"
cls_label_path: "dataset/myData/train_list.txt"
#image_root: "dataset/pa100k/"
#cls_label_path: "dataset/pa100k/train_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [192, 256]
- TimmAutoAugment:
prob: 0.8
config_str: rand-m9-mstd0.5-inc1
interpolation: bicubic
img_size: [192, 256]
- Padv2:
size: [212, 276]
pad_mode: 1
fill_value: 0
- RandomCropImage:
size: [192, 256]
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- RandomErasing:
EPSILON: 0.4
sl: 0.02
sh: 1.0/3.0
r1: 0.3
attempt: 10
use_log_aspect: True
mode: pixel
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: MultiLabelDataset
image_root: "dataset/myData/"
cls_label_path: "dataset/myData/val_list.txt"
#image_root: "dataset/pa100k/"
#cls_label_path: "dataset/pa100k/val_list.txt"
label_ratio: True
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [192, 256]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Infer:
infer_imgs: deploy/images/PULC/person_attribute/
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [192, 256]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: PersonAttribute
threshold: 0.5 #default threshold
#glasses_threshold: 0.3 #threshold only for glasses
#hold_threshold: 0.6 #threshold only for hold
Metric:
Eval:
- ATTRMetric:
The text was updated successfully, but these errors were encountered: