-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcluster_neo4j.py
381 lines (353 loc) · 13.9 KB
/
cluster_neo4j.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import time
import io
import pandas
import numpy as np
import sys
from graphdatascience import GraphDataScience
from neo4j import GraphDatabase
from contextlib import redirect_stdout
import runner_utils
def readGraph(filename):
print_index = 1000000
index_track = 0
nodes = set()
edges_from = []
edges_to = []
weights = []
with open(filename, "r") as in_file:
for line in in_file:
if index_track % print_index == 0:
print("We're at: " + str(index_track))
sys.stdout.flush()
index_track = index_track + 1
line = line.strip()
if not line:
continue
if line[0] == '#':
continue
split = [x.strip() for x in line.split('\t')]
if split:
a = split[0]
b = split[1]
w = 1
if len(split) == 3:
w = split[2]
weights.append(float(w))
weights.append(float(w))
nodes.add(int(a))
nodes.add(int(b))
edges_from.append(int(a))
edges_to.append(int(b))
edges_from.append(int(b))
edges_to.append(int(a))
return nodes, edges_from, edges_to, weights
def appendToFile(out, filename):
with open(filename, "a+") as out_file:
out_file.writelines(out)
def getLoadGraphCommand(graph_path):
nodes_set = set()
cypher_commands_list = []
with open(graph_path, "r") as in_file:
for line in in_file:
line = line.strip()
if not line:
continue
if line[0] == '#':
continue
split = [x.strip() for x in line.split('\t')]
if split:
a = split[0]
b = split[1]
w = 0
if len(split) == 3:
w = split[2]
cypher_commands_list.append("(A" + str(a) + ")-[:EDGE { weight:" + str(w) + " }]->(A" + str(b) + ")")
else:
cypher_commands_list.append("(A" + str(a) + ")-[:EDGE]->(A" + str(b) + ")")
nodes_set.add(int(a))
nodes_set.add(int(b))
cypher_node_commands_list = []
for node in nodes_set:
cypher_node_commands_list.append("(A" + str(node) + ": A {id: "+ str(node)+" })") #
return cypher_commands_list, cypher_node_commands_list
# first argument is input graph
# second argument is louvain, modularity, or leiden; triangle
# third argument is output clustering
# default weight is unweighted
def runNeo4j(graph_path, graph_name, algorithm_name, thread, config, weighted, out_clustering):
## load configs
threshold = None
maxLevels = 10
maxIterations = 10
gamma = 1.0
theta = 0.01
minAssociationStrength = 0.2
minCommunitySize = 0
split = [x.strip() for x in config.split(',')]
for config_item in split:
config_split = [x.strip() for x in config_item.split(':')]
if config_split:
if config_split[0].startswith("threshold"):
if config_split[1] != "None":
threshold = float(config_split[1])
if config_split[0].startswith("maxLevels"):
maxLevels = int(config_split[1])
if config_split[0].startswith("maxIterations"):
maxIterations = int(config_split[1])
if config_split[0].startswith("minAssociationStrength"):
minAssociationStrength = float(config_split[1])
if config_split[0].startswith("gamma"):
gamma = float(config_split[1])
if config_split[0].startswith("theta"):
theta = float(config_split[1])
if config_split[0].startswith("minCommunitySize"):
minCommunitySize = int(config_split[1])
f = io.StringIO()
with redirect_stdout(f):
# Use Neo4j URI and credentials according to your setup
gds = GraphDataScience("bolt://localhost:7687", auth=None)
print("GDS version: ", gds.version())
# graph_name = graph_pre #+ "undir"
# graph_exists = gds.graph.exists(graph_name=graph_name)
# if graph_exists[1]:
# gds.graph.drop(gds.graph.get(graph_name))
graph_exists = gds.graph.exists(graph_name=graph_name)
if not graph_exists.iloc[1]:
print("error, graph does not exist")
return "error, graph does not exist"
G = gds.graph.get(graph_name)
print("database: ", G.database())
# print(G.node_count())
print("Finished loading graph")
print("Relationship count: " + str(G.relationship_count()))
stream_flag = True
community_flag = False
component_flag = False
overlapping_community_flag = False
mutateProperty = ""
print("Graph: ", graph_name, ", Alg.: ", algorithm_name)
sys.stdout.flush()
relationshipWeightProperty = "weight" if weighted else None
stream_kwargs = {
"concurrency": thread,
"relationshipWeightProperty": relationshipWeightProperty
}
start_time = time.time()
res = None
if (algorithm_name.startswith("Louvain")):
community_flag = True
stream_kwargs["maxLevels"]=maxLevels
stream_kwargs["maxIterations"]=maxIterations
mutate_kwargs = stream_kwargs.copy()
if stream_flag:
res = gds.louvain.stream(G, **stream_kwargs)
else:
mutateProperty = "louvaincommunity" + config + str(thread)
mutate_kwargs["mutateProperty"] = mutateProperty
res = gds.louvain.mutate(G, **mutate_kwargs)
elif (algorithm_name.startswith("Leiden")):
community_flag = True
stream_kwargs["maxLevels"]=maxLevels
stream_kwargs["gamma"]=gamma
stream_kwargs["theta"]=theta
mutate_kwargs = stream_kwargs.copy()
if stream_flag:
res = gds.leiden.stream(G, **stream_kwargs)
else:
mutateProperty = "leidencommunity" + config + str(thread)
mutate_kwargs["mutateProperty"] = mutateProperty
res = gds.leiden.mutate(G, **mutate_kwargs)
elif algorithm_name.startswith("Connectivity"):
component_flag = True
stream_kwargs["threshold"] = threshold
mutate_kwargs = stream_kwargs.copy()
if stream_flag:
res = gds.wcc.stream(G, **stream_kwargs)
else:
mutateProperty = "connectivitycommunity" + config + str(thread)
mutate_kwargs["mutateProperty"] = mutateProperty
res = gds.wcc.mutate(G, **mutate_kwargs)
elif algorithm_name.startswith("KCore"):
mutate_kwargs = stream_kwargs.copy()
if stream_flag:
res = gds.kcore.stream(G, **stream_kwargs)
else:
mutateProperty = "kcorecommunity" + config + str(thread)
mutate_kwargs["mutateProperty"] = mutateProperty
res = gds.kcore.mutate(G, **mutate_kwargs)
elif algorithm_name.startswith("ModularityOptimization"):
community_flag = True
stream_kwargs["maxIterations"]=maxIterations
mutate_kwargs = stream_kwargs.copy()
if stream_flag:
res = gds.modularityOptimization.stream(G, **stream_kwargs)
else:
mutateProperty = "modularityOptimizationcommunity" + config + str(thread)
mutate_kwargs["mutateProperty"] = mutateProperty
res = gds.modularityOptimization.mutate(G, **mutate_kwargs)
elif algorithm_name.startswith("LabelPropagation"):
community_flag = True
stream_kwargs["maxIterations"]=maxIterations
stream_kwargs["minCommunitySize"]=minCommunitySize
mutate_kwargs = stream_kwargs.copy()
if stream_flag:
res = gds.labelPropagation.stream(G, **stream_kwargs)
else:
mutateProperty = "labelpropagationcommunity" + config + str(thread)
mutate_kwargs["mutateProperty"] = mutateProperty
res = gds.labelPropagation.mutate(G, **mutate_kwargs)
elif algorithm_name.startswith("SLPA"):
overlapping_community_flag = True
stream_kwargs["maxIterations"]=maxIterations
stream_kwargs["minAssociationStrength"]=minAssociationStrength
mutate_kwargs = stream_kwargs.copy()
if stream_flag:
res = gds.alpha.sllpa.stream(G, **stream_kwargs)
else:
mutateProperty = "SLPAcommunity" + config + str(thread)
mutate_kwargs["mutateProperty"] = mutateProperty
res = gds.labelPropagation.mutate(G, **mutate_kwargs)
else:
print("The algorithm ", algorithm_name, " is not available")
raise Exception("The algorithm " + algorithm_name + " is not available")
end_time = time.time()
print(stream_kwargs)
# print(res)
# node1 = gds.find_node_id(["A"], {"id": 0})
# node2 = gds.find_node_id(["A"], {"id": 1})
# print(node1, node2)
print("Time: " + str(end_time - start_time))
if not stream_flag:
print("Preprocessing millis: " + str(res["preProcessingMillis"]))
print("Compute millis: " + str(res["computeMillis"]))
print("Postprocessing millis: " + str(res["postProcessingMillis"]))
sys.stdout.flush()
result = None
if not stream_flag:
if algorithm_name.startswith("triangle"):
print("Triangle count: " + str(res["globalTriangleCount"]))
print("Node count: " + str(res["nodeCount"]))
sys.stdout.flush()
if (community_flag):
print("Community count: " + str(res["communityCount"]))
print("Modularity: " + str(res["modularity"]))
sys.stdout.flush()
if (component_flag):
# pass
print("Community count: " + str(res["componentCount"]))
# print(G.node_properties())
start_time = time.time()
result_df = gds.graph.nodeProperty.stream(G, node_properties=mutateProperty)
end_time = time.time()
print("Gather result Time: " + str(end_time - start_time))
result = result_df.groupby("propertyValue")['nodeId'].apply(list).tolist()
# result.to_csv(out_clustering, index=False)
else:
# res.to_csv(out_clustering, index=False)
# Group the nodeId values by componentId and convert to a list
if (component_flag):
result = res.groupby('componentId')['nodeId'].apply(list).tolist()
if (community_flag):
result = res.groupby('communityId')['nodeId'].apply(list).tolist()
if overlapping_community_flag:
res['communityIds'] = res['values'].apply(lambda x: x['communityIds'])
res_exploded = res.explode('communityIds', ignore_index=True)
result = res_exploded.groupby('communityIds')['nodeId'].apply(list).tolist()
if not (result is None):
for cluster_list in result:
runner_utils.appendToFile("\t".join(str(x) for x in cluster_list) + "\n", out_clustering)
sys.stdout.flush()
gds.close()
out = f.getvalue()
return out
def clearDB(graph_name):
gds = GraphDataScience("bolt://localhost:7687", auth=None)
_ = gds.run_cypher("MATCH (n) DETACH DELETE n")
graph_exists = gds.graph.exists(graph_name=graph_name)
if graph_exists.iloc[1]:
gds.graph.drop(gds.graph.get(graph_name))
gds.close()
print("Neo4j graph removed", graph_name)
# the graph projected is undirected.
def projectGraph(graph_name, graph_path):
# Use Neo4j URI and credentials according to your setup
neo4j_url = "bolt://localhost:7687"
neo4j_client = GraphDatabase.driver(neo4j_url, auth=None, max_connection_lifetime=7200)
gds = GraphDataScience(neo4j_client, auth=None) #"bolt://localhost:7687"
graph_exists = gds.graph.exists(graph_name=graph_name)
if not graph_exists.iloc[1]:
# cypher_commands_list, cypher_node_commands_list = getLoadGraphCommand(graph_path)
# print("Finished loading in memory")
# sys.stdout.flush()
# # _ = gds.run_cypher("MATCH (n) DETACH DELETE n")
# cypher_command = "CREATE " + ', '.join(cypher_node_commands_list) +", "+ ', '.join(cypher_commands_list)
# # print(cypher_command)
# start_time = time.time()
# gds.run_cypher(cypher_command)
# end_time = time.time()
# print("Node and Edge Reading Time: " + str(end_time - start_time))
# # sys.stdout.flush()
# print("Finished cypher")
# sys.stdout.flush()
# gds.run_cypher("CALL gds.graph.project(\'" + graph_name + "\', \'*\', {EDGE: {orientation: \'UNDIRECTED\', properties: ['weight']}})")
nodes_set, edges_from, edges_to, weights = readGraph(graph_path)
nodes_dict = {}
nodes_dict["nodeId"] = list(nodes_set)
relationships_dict = {}
relationships_dict["sourceNodeId"] = edges_from
relationships_dict["targetNodeId"] = edges_to
rel_type_list = ["EDGE"] * len(edges_from)
relationships_dict["relationshipType"] = rel_type_list
if len(weights) > 0:
relationships_dict["weight"] = weights
nodes = pandas.DataFrame(nodes_dict)
relationships = pandas.DataFrame(relationships_dict)
print("Finish loading in memory")
sys.stdout.flush()
print("Starting gds")
sys.stdout.flush()
# _ = gds.run_cypher("MATCH (n) DETACH DELETE n")
#_ = gds.run_cypher("CALL apoc.schema.assert({},{},true) YIELD label, key RETURN *")
print("Cleared db")
sys.stdout.flush()
start_time = time.time()
G = gds.graph.construct( #G_dir
graph_name, # Graph name
nodes, # One or more dataframes containing node data
relationships, # One or more dataframes containing relationship data
undirected_relationship_types = ["EDGE"]
)
end_time = time.time()
print("Reading Time: " + str(end_time - start_time))
print("Node Count: ", G.node_count())
print("Finished cypher")
sys.stdout.flush()
gds.close()
return True
gds.close()
return False
def main():
args = sys.argv[1:]
directory = "/home/ubuntu/"
graphs = ["com-dblp.ungraph.txt"]#"edge.txt", #"com-dblp.ungraph.txt","com-youtube.ungraph.txt", "com-amazon.ungraph.txt",
# graph_pres = ["edge"] # "dblp","youtube", "amazon",
config = "threashold: None, weighted: False"
for graph_idx, graph in enumerate(graphs):
# graph_pre = graph_pres[graph_idx]
graph_name = directory + "snap/" + graph
alg = "louvain"
# out_dir = directory + "neo4j_out/" + graph_pre + "_"
if args[0] == "run":
runNeo4j(graph_name, graph, alg, 4, config, "tmp.csv")
elif args[0] == "load":
projectGraph(graph, graph_name)
elif args[0] == "delete":
clearDB(graph)
#for graph_idx, graph in enumerate(graphs):
# graph_pre = graph_pres[graph_idx]
# graph_name = directory + "snap/" + graph
# algs = ["leiden"]
# out_dir = directory + "neo4j_out/" + graph_pre + "_"
# run_algs(graph_name, algs, out_dir, graph_pre)
if __name__ == "__main__":
main()