forked from KumudTripathi/discourse_prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolution_net_classes.py
407 lines (340 loc) · 16.8 KB
/
convolution_net_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import numpy
import theano.tensor.shared_randomstreams
import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv
def ReLU(x):
y = T.maximum(0.0, x)
return(y)
def Sigmoid(x):
y = T.nnet.sigmoid(x)
return(y)
def Tanh(x):
y = T.tanh(x)
return(y)
def Iden(x):
y = x
return(y)
class HiddenLayer(object):
"""
Class for HiddenLayer
"""
def __init__(self, rng, input, n_in, n_out, activation, W=None, b=None,
use_bias=False):
self.input = input
self.activation = activation
if W is None:
if activation.func_name == "ReLU":
W_values = numpy.asarray(0.01 * rng.standard_normal(size=(n_in, n_out)), dtype=theano.config.floatX)
else:
W_values = numpy.asarray(rng.uniform(low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)), dtype=theano.config.floatX)
W = theano.shared(value=W_values, name='W')
if b is None:
b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b')
self.W = W
self.b = b
if use_bias:
lin_output = T.dot(input, self.W) + self.b
else:
lin_output = T.dot(input, self.W)
self.output = (lin_output if activation is None else activation(lin_output))
# parameters of the model
if use_bias:
self.params = [self.W, self.b]
else:
self.params = [self.W]
def _dropout_from_layer(rng, layer, p):
"""p is the probablity of dropping a unit
"""
srng = theano.tensor.shared_randomstreams.RandomStreams(rng.randint(999999))
# p=1-p because 1's indicate keep and p is prob of dropping
mask = srng.binomial(n=1, p=1-p, size=layer.shape)
# The cast is important because
# int * float32 = float64 which pulls things off the gpu
output = layer * T.cast(mask, theano.config.floatX)
return output
class DropoutHiddenLayer(HiddenLayer):
def __init__(self, rng, input, n_in, n_out,
activation, dropout_rate, use_bias, W=None, b=None):
super(DropoutHiddenLayer, self).__init__(
rng=rng, input=input, n_in=n_in, n_out=n_out, W=W, b=b,
activation=activation, use_bias=use_bias)
self.output = _dropout_from_layer(rng, self.output, p=dropout_rate)
class MLPDropout(object):
"""A multilayer perceptron with dropout"""
def __init__(self,rng,input,layer_sizes,dropout_rates,activations,use_bias=True):
#rectified_linear_activation = lambda x: T.maximum(0.0, x)
# Set up all the hidden layers
self.weight_matrix_sizes = zip(layer_sizes, layer_sizes[1:])
self.layers = []
self.dropout_layers = []
self.activations = activations
next_layer_input = input
#first_layer = True
# dropout the input
next_dropout_layer_input = _dropout_from_layer(rng, input, p=dropout_rates[0])
layer_counter = 0
for n_in, n_out in self.weight_matrix_sizes[:-1]:
next_dropout_layer = DropoutHiddenLayer(rng=rng,
input=next_dropout_layer_input,
activation=activations[layer_counter],
n_in=n_in, n_out=n_out, use_bias=use_bias,
dropout_rate=dropout_rates[layer_counter])
self.dropout_layers.append(next_dropout_layer)
next_dropout_layer_input = next_dropout_layer.output
# Reuse the parameters from the dropout layer here, in a different
# path through the graph.
next_layer = HiddenLayer(rng=rng,
input=next_layer_input,
activation=activations[layer_counter],
# scale the weight matrix W with (1-p)
W=next_dropout_layer.W * (1 - dropout_rates[layer_counter]),
b=next_dropout_layer.b,
n_in=n_in, n_out=n_out,
use_bias=use_bias)
self.layers.append(next_layer)
next_layer_input = next_layer.output
#first_layer = False
layer_counter += 1
# Set up the output layer
n_in, n_out = self.weight_matrix_sizes[-1]
dropout_output_layer = LogisticRegression(
input=next_dropout_layer_input,
n_in=n_in, n_out=n_out)
self.dropout_layers.append(dropout_output_layer)
# Again, reuse paramters in the dropout output.
output_layer = LogisticRegression(
input=next_layer_input,
# scale the weight matrix W with (1-p)
W=dropout_output_layer.W * (1 - dropout_rates[-1]),
b=dropout_output_layer.b,
n_in=n_in, n_out=n_out)
self.layers.append(output_layer)
# Use the negative log likelihood of the logistic regression layer as
# the objective.
self.dropout_negative_log_likelihood = self.dropout_layers[-1].negative_log_likelihood
self.dropout_errors = self.dropout_layers[-1].errors
self.negative_log_likelihood = self.layers[-1].negative_log_likelihood
self.errors = self.layers[-1].errors
# Grab all the parameters together.
self.params = [ param for layer in self.dropout_layers for param in layer.params ]
def predict(self, new_data):
next_layer_input = new_data
for i,layer in enumerate(self.layers):
if i<len(self.layers)-1:
next_layer_input = self.activations[i](T.dot(next_layer_input,layer.W) + layer.b)
else:
p_y_given_x = T.nnet.softmax(T.dot(next_layer_input, layer.W) + layer.b)
y_pred = T.argmax(p_y_given_x, axis=1)
return y_pred
def predict_p(self, new_data):
next_layer_input = new_data
for i,layer in enumerate(self.layers):
if i<len(self.layers)-1:
next_layer_input = self.activations[i](T.dot(next_layer_input,layer.W) + layer.b)
else:
p_y_given_x = T.nnet.softmax(T.dot(next_layer_input, layer.W) + layer.b)
return p_y_given_x
class MLP(object):
"""Multi-Layer Perceptron Class
A multilayer perceptron is a feedforward artificial neural network model
that has one layer or more of hidden units and nonlinear activations.
Intermediate layers usually have as activation function tanh or the
sigmoid function (defined here by a ``HiddenLayer`` class) while the
top layer is a softamx layer (defined here by a ``LogisticRegression``
class).
"""
def __init__(self, rng, input, n_in, n_hidden, n_out):
"""Initialize the parameters for the multilayer perceptron
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_hidden: int
:param n_hidden: number of hidden units
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
"""
# Since we are dealing with a one hidden layer MLP, this will translate
# into a HiddenLayer with a tanh activation function connected to the
# LogisticRegression layer; the activation function can be replaced by
# sigmoid or any other nonlinear function
self.hiddenLayer = HiddenLayer(rng=rng, input=input,
n_in=n_in, n_out=n_hidden,
activation=T.tanh)
# The logistic regression layer gets as input the hidden units
# of the hidden layer
self.logRegressionLayer = LogisticRegression(
input=self.hiddenLayer.output,
n_in=n_hidden,
n_out=n_out)
# L1 norm ; one regularization option is to enforce L1 norm to
# be small
# negative log likelihood of the MLP is given by the negative
# log likelihood of the output of the model, computed in the
# logistic regression layer
self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood
# same holds for the function computing the number of errors
self.errors = self.logRegressionLayer.errors
# the parameters of the model are the parameters of the two layer it is
# made out of
self.params = self.hiddenLayer.params + self.logRegressionLayer.params
class LogisticRegression(object):
"""Multi-class Logistic Regression Class
The logistic regression is fully described by a weight matrix :math:`W`
and bias vector :math:`b`. Classification is done by projecting data
points onto a set of hyperplanes, the distance to which is used to
determine a class membership probability.
"""
def __init__(self, input, n_in, n_out, W=None, b=None):
""" Initialize the parameters of the logistic regression
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
"""
# initialize with 0 the weights W as a matrix of shape (n_in, n_out)
if W is None:
self.W = theano.shared(
value=numpy.zeros((n_in, n_out), dtype=theano.config.floatX),
name='W')
else:
self.W = W
# initialize the baises b as a vector of n_out 0s
if b is None:
self.b = theano.shared(
value=numpy.zeros((n_out,), dtype=theano.config.floatX),
name='b')
else:
self.b = b
# compute vector of class-membership probabilities in symbolic form
self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)
# compute prediction as class whose probability is maximal in
# symbolic form
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
# parameters of the model
self.params = [self.W, self.b]
def negative_log_likelihood(self, y):
"""Return the mean of the negative log-likelihood of the prediction
of this model under a given target distribution.
.. math::
\frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) =
\frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\
\ell (\theta=\{W,b\}, \mathcal{D})
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
Note: we use the mean instead of the sum so that
the learning rate is less dependent on the batch size
"""
# y.shape[0] is (symbolically) the number of rows in y, i.e.,
# number of examples (call it n) in the minibatch
# T.arange(y.shape[0]) is a symbolic vector which will contain
# [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of
# Log-Probabilities (call it LP) with one row per example and
# one column per class LP[T.arange(y.shape[0]),y] is a vector
# v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ...,
# LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is
# the mean (across minibatch examples) of the elements in v,
# i.e., the mean log-likelihood across the minibatch.
return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])
def errors(self, y):
"""Return a float representing the number of errors in the minibatch ;
zero one loss over the size of the minibatch
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
"""
# check if y has same dimension of y_pred
if y.ndim != self.y_pred.ndim:
raise TypeError('y should have the same shape as self.y_pred',
('y', target.type, 'y_pred', self.y_pred.type))
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
return T.mean(T.neq(self.y_pred, y))
else:
raise NotImplementedError()
class LeNetConvPoolLayer(object):
"""Pool Layer of a convolutional network """
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2), non_linear="tanh"):
"""
Allocate a LeNetConvPoolLayer with shared variable internal parameters.
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dtensor4
:param input: symbolic image tensor, of shape image_shape
:type filter_shape: tuple or list of length 4
:param filter_shape: (number of filters, num input feature maps,
filter height,filter width)
:type image_shape: tuple or list of length 4
:param image_shape: (batch size, num input feature maps,
image height, image width)
:type poolsize: tuple or list of length 2
:param poolsize: the downsampling (pooling) factor (#rows,#cols)
"""
assert image_shape[1] == filter_shape[1]
self.input = input
self.filter_shape = filter_shape
self.image_shape = image_shape
self.poolsize = poolsize
self.non_linear = non_linear
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = numpy.prod(filter_shape[1:])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /numpy.prod(poolsize))
# initialize weights with random weights
if self.non_linear=="none" or self.non_linear=="relu":
self.W = theano.shared(numpy.asarray(rng.uniform(low=-0.01,high=0.01,size=filter_shape),
dtype=theano.config.floatX),borrow=True,name="W_conv")
else:
W_bound = numpy.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(numpy.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX),borrow=True,name="W_conv")
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True, name="b_conv")
# convolve input feature maps with filters
conv_out = conv.conv2d(input=input, filters=self.W,filter_shape=self.filter_shape, image_shape=self.image_shape)
if self.non_linear=="tanh":
conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
elif self.non_linear=="relu":
conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
else:
pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
self.output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
self.params = [self.W, self.b]
def predict(self, new_data, batch_size):
"""
predict for new data
"""
img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
if self.non_linear=="tanh":
conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
if self.non_linear=="relu":
conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
else:
pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
return output