-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRunISNetGrad.py
355 lines (303 loc) · 13.8 KB
/
RunISNetGrad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.functional as f
import torchvision.transforms as transforms
import torchvision as tv
import torch.utils.data as data
import os
import matplotlib.pyplot as plt
import random
from torch.utils.data import Dataset, DataLoader
import time
import numpy as np
import matplotlib
import math
import copy
import warnings
import SingleLabelEval as SLE
import pytorch_lightning as pl
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import ModelCheckpoint
import h5py
from argparse import ArgumentParser
import torch.utils.data as Tdata
import sys
import locations
sys.path.append(locations.ISNet)
TrainedPath=locations.TrainedPath
import ISNetFunctionsZe as IsNet
import LRPDenseNetZe as LRPDenseNet
import ISNetLayersZe as LRPL
import ISNetLightningZeGradient as ISNetLightning
os.environ["CUBLAS_WORKSPACE_CONFIG"]=":4096:8"
torch.backends.cudnn.deterministic = True
torch.use_deterministic_algorithms(True)
def InterpretArgs(hparams):
batch=int(hparams.batch)
if ('[' in hparams.devices):#call for specific gpu: use [x]
device=[int(hparams.devices[1])]
else:
device=int(hparams.devices)
findLr=False
if (hparams.LrFinder is not None):
findLr=True
heat=False
if (hparams.heat=='1'):
heat=True
bias=False
if (hparams.bias=='1'):
bias=True
return batch,device,findLr,heat,bias
class MNISTDatset(Dataset):
def __init__(self, mode,bias,masks=True,confounding=False,source=locations.source):
self.images=[]
if (mode=='train'):
if (not bias):
self.dataset=h5py.File(source+'trainUnbiased.h5py', 'r')
else:
self.dataset=h5py.File(source+'train.h5py', 'r')
if (mode=='val'):
if (not bias):
self.dataset=h5py.File(source+'valUnbiased.h5py', 'r')
else:
self.dataset=h5py.File(source+'val.h5py', 'r')
if (mode=='test'):
if not bias:
self.dataset=h5py.File(source+'unbiasedTest.h5py', 'r')
else:
if confounding:
self.dataset=h5py.File(source+'confoundingTest.h5py', 'r')
else:
self.dataset=h5py.File(source+'biasedTest.h5py', 'r')
self.masks=masks
def __len__(self):
return (len(self.dataset['images']))
def __getitem__(self,idx):
image=torch.from_numpy(self.dataset['images'][idx]).unsqueeze(0).repeat(3,1,1)
if self.masks:
mask=torch.from_numpy(self.dataset['masks'][idx]).unsqueeze(0).repeat(3,1,1)
label=torch.tensor(self.dataset['labels'][idx]).long()
if self.masks:
return image,mask,label
else:
return image,label
def main(hparams):
#unbiased ISNet
NetName=hparams.name
print(NetName)
batch,device,findLr,heat,bias=InterpretArgs(hparams)
trainSet=MNISTDatset('train',masks=heat,bias=bias)
testSet=MNISTDatset('test',masks=heat,bias=bias)
valSet=MNISTDatset('val',masks=heat,bias=bias)
precision=hparams.precision
if (precision=='16' or precision=='32'):
precision=int(precision)
trainingLoader=Tdata.DataLoader(trainSet,batch_size=batch,shuffle=True,
num_workers=int(hparams.workers))
validatingLoader=Tdata.DataLoader(valSet,batch_size=batch,shuffle=False,
num_workers=int(hparams.workers))
testingLoader=Tdata.DataLoader(testSet,batch_size=1,shuffle=False,
num_workers=1)
if(hparams.train=='1' and (hparams.cut=='load') and (hparams.continuing=='0')):
cut,cut2,means,stds=torch.load(TrainedPath+'/'+NetName+'/cut.py')
else:
try:
cut={'input':float(hparams.cut)}
cut2={'input':float(hparams.cut2)}
if hparams.penalizeAll=='1':
raise ValueError('Use --cut tune')
except:
if hparams.cut!='tune':
raise ValueError('invalid cut parameter')
#temporary values for tune cut
cut={'input':1e-5}
cut2={'input':1000.0}
if(hparams.train=='1' and (hparams.cut=='tune') and (hparams.continuing=='0')):
print('Cut tunning started')
#train standard DNN (without heatmap loss) to get standard heatmap values range
net=ISNetLightning.ISNetLgt(architecture=hparams.backbone,
dropout=(hparams.dropout=='1'),
multiLabel=False,
pretrained=False,classes=10,
heat=(hparams.heat=='1'),
LR=float(hparams.lr),optim='SGD',
A=float(hparams.A),B=float(hparams.B),d=float(hparams.d),
E=float(hparams.Ea),
cut=cut,cut2=cut2,
momentum=float(hparams.momentum),
penalizeAll=(hparams.penalizeAll=='1'),
dLoss=float(hparams.dLoss),
clip=float(hparams.clip),
gradientMode=hparams.gradientMode,
alternativeForeground=hparams.alternativeForeground)
net.initTuneCut(epochs=int(hparams.tuneCutEpochs))
trainer=pl.Trainer(precision=precision,callbacks=None,
accelerator=hparams.accelerator,devices=device,
max_epochs=int(hparams.tuneCutEpochs),
strategy=hparams.strategy,
num_nodes=int(hparams.nodes),
auto_select_gpus=True,
logger=False,
auto_lr_find=False,
deterministic=True)
trainer.fit(net,trainingLoader,validatingLoader)
cut,cut2,means,stds=net.returnCut()
#erase trained network
del net
del trainer
print('cut values: ',cut)
print('cut2 values: ',cut2)
print('heatmaps sum mean value: ',means)
print('heatmaps sum std value: ',stds)
print('Cut tunning finished')
os.makedirs(TrainedPath+'/'+NetName, exist_ok=True)
torch.save((cut,cut2,means,stds),TrainedPath+'/'+NetName+'/cut.py')
net=ISNetLightning.ISNetLgt(architecture=hparams.backbone,
dropout=(hparams.dropout=='1'),
multiLabel=False,
pretrained=False,classes=10,
heat=(hparams.heat=='1'),
LR=float(hparams.lr),P=float(hparams.P),optim='SGD',
A=float(hparams.A),B=float(hparams.B),d=float(hparams.d),
E=float(hparams.Ea),
cut=cut,cut2=cut2,
momentum=float(hparams.momentum),
penalizeAll=(hparams.penalizeAll=='1'),
dLoss=float(hparams.dLoss),
clip=float(hparams.clip),
gradientMode=hparams.gradientMode,
alternativeForeground=hparams.alternativeForeground)
if (not os. path. exists(TrainedPath+'/'+NetName)):
os.makedirs(TrainedPath+'/'+NetName, exist_ok=True)
checkpoint_callback = ModelCheckpoint(dirpath=TrainedPath+NetName+'/',
filename=NetName+'{epoch}-{step}',
monitor='val_iidLoss',
verbose=True,
save_top_k=1,
mode='min',
every_n_epochs=1,
save_on_train_epoch_end=False,
auto_insert_metric_name=False,
save_weights_only=False,
save_last=True
)
tb_logger=pl_loggers.TensorBoardLogger(save_dir='Logs/'+NetName+'/')
if not os.path.exists('Logs/'+NetName+'/'):
os.makedirs('Logs/'+NetName+'/', exist_ok=True)
if(hparams.continuing=='1' and hparams.train=='1'):
checkpoint=TrainedPath+NetName+'/'+'last.ckpt'
else:
checkpoint=hparams.checkpoint
if(hparams.train=='1'):
trainer=pl.Trainer(precision=precision,callbacks=[checkpoint_callback],
accelerator=hparams.accelerator,devices=device,
max_epochs=int(hparams.epochs),strategy=hparams.strategy,
num_nodes=int(hparams.nodes),
auto_select_gpus=True,
logger=tb_logger,
auto_lr_find=findLr,
deterministic=True
)
if (findLr):
trainer.tune(net,trainingLoader,validatingLoader)
if checkpoint is not None:
del net
net=ISNetLightning.ISNetLgt.load_from_checkpoint(checkpoint)
print('cut is:',net.cut,net.cut2)
trainer.fit(net,trainingLoader,validatingLoader,ckpt_path=checkpoint)
else:
trainer=pl.Trainer(precision=precision,accelerator=hparams.accelerator,devices=device,
strategy=hparams.strategy,num_nodes=1,
auto_select_gpus=True)
net=net.load_from_checkpoint(checkpoint)
#test:
net.eval()
net.heat=False
if(bias):
for i in list(range(5)):
print('')
print(NetName+' Test Biased')
testSet=MNISTDatset('test',masks=False,bias=True)
testingLoader=Tdata.DataLoader(testSet,batch_size=4,shuffle=False,
num_workers=1)
if(hparams.train=='1'):
trainer.test(dataloaders=testingLoader)
else:
trainer.test(net,dataloaders=testingLoader)
pred,labels=net.TestResults
pred,labels=torch.nan_to_num(pred).float(),labels.float()
acc=SLE.Acc(pred,labels)
print(NetName+' Acc:',acc)
for i in list(range(5)):
print('')
print(NetName+' Test Unbiased')
testSet=MNISTDatset('test',masks=False,bias=False)
testingLoader=Tdata.DataLoader(testSet,batch_size=4,shuffle=False,
num_workers=1)
if(hparams.train=='1'):
trainer.test(dataloaders=testingLoader)
else:
trainer.test(net,dataloaders=testingLoader)
pred,labels=net.TestResults
pred,labels=torch.nan_to_num(pred).float(),labels.float()
acc=SLE.Acc(pred,labels)
print(NetName+' Acc:',acc)
for i in list(range(5)):
print('')
print(NetName+' Test Confounding')
testSet=MNISTDatset('test',masks=False,bias=True,confounding=True)
testingLoader=Tdata.DataLoader(testSet,batch_size=4,shuffle=False,
num_workers=1)
if(hparams.train=='1'):
trainer.test(dataloaders=testingLoader)
else:
trainer.test(net,dataloaders=testingLoader)
pred,labels=net.TestResults
pred,labels=torch.nan_to_num(pred).float(),labels.float()
acc=SLE.Acc(pred,labels)
print(NetName+' Acc:',acc)
if __name__ == '__main__':
parser=ArgumentParser()
parser.add_argument('--train', default='1')
parser.add_argument('--accelerator', default='gpu')
parser.add_argument('--local_rank', default=None)
parser.add_argument('--devices', default='1')
parser.add_argument('--nodes', default=1)
parser.add_argument('--load', default=None)
parser.add_argument('--epochs', default=100)
parser.add_argument('--strategy', default=None)
parser.add_argument('--batch', default=8)
parser.add_argument('--LrFinder', default=None)
parser.add_argument('--name', default='ISNetMNIST')
parser.add_argument('--continuing', default='0')
parser.add_argument('--checkpoint', default=None)
parser.add_argument('--bias', default='1')
parser.add_argument('--workers', default='4')
parser.add_argument('--lr', default='1e-2')
parser.add_argument('--heat', default='1')
parser.add_argument('--P', default='0.7')
parser.add_argument('--cut', default='1')
parser.add_argument('--cut2', default='25')
parser.add_argument('--A', default='1')
parser.add_argument('--B', default='1')
parser.add_argument('--Ea', default='1')
parser.add_argument('--d', default='0.9')
parser.add_argument('--e', default='1e-2')
parser.add_argument('--clip', default='1.0')
parser.add_argument('--selective', default='1')
parser.add_argument('--highest', default='1')
parser.add_argument('--rule', default='e')
parser.add_argument('--precision', default='32')
parser.add_argument('--tuneCutEpochs', default='5')
parser.add_argument('--multiple', default='0')
parser.add_argument('--norm', default='1')
parser.add_argument('--momentum', default='0.9')
parser.add_argument('--backbone', default='resnet18')
parser.add_argument('--dropout', default='0')
parser.add_argument('--penalizeAll', default='0')
parser.add_argument('--dLoss', default='0.8')
parser.add_argument('--alternativeForeground', default='L2')
parser.add_argument('--gradientMode', default='logits')
args=parser.parse_args()
main(args)