-
Notifications
You must be signed in to change notification settings - Fork 0
/
20150107.tex
executable file
·75 lines (60 loc) · 2.4 KB
/
20150107.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
\input{include.tex}
\markright{Piotr Suwara\hfill Homological algebra II: January 7, 2014\hfill}
\begin{document}
\begin{remark}
$C_\ast(\C)$ does not have enough projective objects.
\end{remark}
\begin{theorem}
The sequence of functors $\{ H_i\}_{i=0}^\infty$
gives us a~{\em universal $\delta$-functor}
(takes short exact sequences to long exact sequences),
i.e. if we have another sequence $T_i$ such that
${T_0 = H_0}$, then $\forall_i H_i^\ast= T_i^\ast$.
\end{theorem}
\begin{lemma}
For a~given $C_\ast \in C_\ast(\C)$ there exists
$P_\ast \twoheadrightarrow C_\ast$
such that $H_i(P_\ast) = 0$ for $i>0$.
\end{lemma}
\begin{remark}
If $p+q=n$,
let $f_{pq}:X_{nn}\to X_{pq}$ be
defined as $d_{p+1}^h \circ \ldots \circ d_n^h
\circ d_0^v \circ \ldots \circ d_0^v$,
and then the Alexander-Whitney map
$\sum_{p+q = n}f_{pq}:X_{nn} \to \bigoplus_{p+q=n}X_{pq}$
gives a~chain homotopy equivalence
of $k(X_{pp})$ and $\mr{tot}(kX_{pq})$.
\end{remark}
\begin{remark}
We may take a~projective simplicial resolution $P_\ast$ of $A$
of degree $n>i$,
then $L_i^s T(A) = H_{n+i}(T(P_\ast))$.
\end{remark}
\begin{theorem}
$\deg L_i T(\bullet, n) \leq \lfloor \frac i n \rfloor$.
\end{theorem}
\begin{remark}
Or theorem? Or proof?
It is written that
\\ $T((A,n)\oplus(B,n)) = T(A,n) \oplus T(B,n) \oplus V$
where $V$ is trivial below $2n$.
\end{remark}
\begin{proposition}
$\forall_i \, L_i^sT$ is an additive functor.
\end{proposition}
\begin{proposition}
Let $0 \to A \to B \to C \to 0$ be exact in $\C$.
Then we have a~long exact sequence
$\ldots \to L_{q+1}^s T(C) \to L_q^sT(A) \to L_q^sT(B) \to L_q^sT(C) \to \ldots$.
\end{proposition}
\begin{proposition}
If $0 \to T' \to T \to T'' \to 0$ is an exact sequence of functors,
then we have a~long exact sequence of functors
$\ldots \to L_{i+1}^s T'' \to L_i^s T' \to L_i^s T \to L_i^s T'' \to \ldots$.
\end{proposition}
\begin{proposition}
Let $U$ be an additive functor, then for any functor $T$ we have
\\ $\Hom_{sth}(T,U) \simeq \Hom_{sth2}(L^s_0 T,U)$.
\end{proposition}
\end{document}