-
Notifications
You must be signed in to change notification settings - Fork 249
/
Copy pathgenerate.py
271 lines (246 loc) · 8.42 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import sys
import torch
from peft import PeftModel
import transformers
import gradio as gr
import argparse
from transformers import (
LlamaForCausalLM, LlamaTokenizer,
AutoModel, AutoTokenizer,
BloomForCausalLM, BloomTokenizerFast)
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--data', type=str, help='the data used for instructing tuning')
parser.add_argument('--model_type', default="llama", choices=['llama', 'chatglm', 'bloom'])
parser.add_argument('--size', type=str, help='the size of llama model')
parser.add_argument('--model_name_or_path', default="decapoda-research/llama-7b-hf", type=str)
args = parser.parse_args()
assert (
"LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
LOAD_8BIT = False
if args.model_type == "llama":
BASE_MODEL = "decapoda-research/llama-7b-hf"
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
LORA_WEIGHTS = "./saved-"+args.data+args.size+"b"
elif args.model_type == "bloom":
BASE_MODEL = "bigscience/bloomz-7b1-mt"
tokenizer = BloomTokenizerFast.from_pretrained(BASE_MODEL)
LORA_WEIGHTS = "./saved_bloominstinwild-belle1.5m/middle"
elif args.model_type == "chatglm":
BASE_MODEL = "THUDM/chatglm-6b"
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL,trust_remote_code=True)
LORA_WEIGHTS = "./saved_chatglm" + args.data
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
if device == "cuda":
if args.model_type == "llama":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
torch_dtype=torch.float16,
)
elif args.model_type == "bloom":
model = BloomForCausalLM.from_pretrained(
BASE_MODEL,
load_in_8bit=LOAD_8BIT,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
torch_dtype=torch.float16,
)
elif args.model_type == "chatglm":
model = AutoModel.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
torch_dtype=torch.float16,
)
elif device == "mps":
if args.model_type == "llama":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
elif args.model_type == "bloom":
model = BloomForCausalLM.from_pretrained(
BASE_MODEL,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
elif args.model_type == "chatglm":
model = AutoModel.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
if args.model_type == "llama":
model = LlamaForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
elif args.model_type == "bloom":
model = BloomForCausalLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
elif args.model_type == "chatglm":
model = AutoModel.from_pretrained(
BASE_MODEL,trust_remote_code=True,
device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
def generate_prompt(instruction, input=None):
if input:
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
else:
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""
if not LOAD_8BIT:
model.half() # seems to fix bugs for some users.
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=1.0,
top_p=0.9,
top_k=40,
num_beams=4,
max_new_tokens=512,
**kwargs,
):
prompt = generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
do_sample=True,
no_repeat_ngram_size=6,
repetition_penalty=1.8,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output.split("### Response:")[1].strip()
"""
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2, label="Instruction", placeholder="Tell me about alpacas."
),
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title="alpaca4",
description="Alpaca4",
).launch()
# Old testing code follows.
"""
if __name__ == "__main__":
# testing code for readme
# for instruction in [
# "Tell me about alpacas.",
# "Tell me about the president of Mexico in 2019.",
# "Tell me about the king of France in 2019.",
# "List all Canadian provinces in alphabetical order.",
# "Write a Python program that prints the first 10 Fibonacci numbers.",
# "Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.",
# "Tell me five words that rhyme with 'shock'.",
# "Translate the sentence 'I have no mouth but I must scream' into Spanish.",
# "Count up from 1 to 500.",
# ]:
while 1:
print("PLZ input instruction:")
instruction = input()
response = evaluate(instruction)
if response[-4:] == "</s>":
response = response[:-4]
print("Response:", response)
print()