-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathpredictor.py
212 lines (176 loc) · 8.44 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import requests
from typing import Dict, Any, Tuple, Union, List
import os
import cv2
import torch
from torch import Tensor
import numpy as np
import logging
import albumentations as A
from albumentations.augmentations.geometric import py3round
from utils import load_yaml, get_relative_path
from model_training.head_mesh import HeadMesh
from model_training.model.utils import to_device, unravel_index, calculate_paddings
from model_training.data.config import OUTPUT_3DMM_PARAMS, OUTPUT_2D_LANDMARKS, OUTPUT_LANDMARKS_HEATMAP
logger = logging.getLogger(__name__)
_FILENAME = "dad_3dheads.trcd"
_PUBLIC_URL = "https://media.pinatafarm.com/public/research/dad-3dheads/dad_3dheads.trcd"
def model_exists() -> bool:
return os.path.isfile(os.path.join(os.path.expanduser("~"), ".dad_checkpoints", _FILENAME))
def download_model(url: str, retries: int = 5, verify_ssl: bool = True) -> None:
"""Download an given URL
Parameters:
----------
url : str
URL to download
retries : integer, default 5
The number of times to attempt the download in case of failure or non 200 return codes
verify_ssl : bool, default True
Verify SSL certificates.
"""
os.makedirs(os.path.join(os.path.expanduser("~"), ".dad_checkpoints"), exist_ok=True)
filename = os.path.join(os.path.expanduser("~"), ".dad_checkpoints", _FILENAME)
assert retries >= 0, "Number of retries should be at least 0"
if not verify_ssl:
logger.warning(
"Unverified HTTPS request is being made (verify_ssl=False). "
"Adding certificate verification is strongly advised.")
while retries + 1 > 0:
try:
logger.info("Downloading {} from {}...".format(filename, url))
r = requests.get(url, stream=True, verify=verify_ssl)
if r.status_code != 200:
raise RuntimeError("Failed downloading url {}".format(url))
with open(filename, "wb") as f:
for chunk in r.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
break
except Exception as e:
retries -= 1
if retries <= 0:
raise e
else:
logger.info("download failed, retrying, {} attempt{} left".format(retries, "s" if retries > 1 else ""))
class FaceMeshPredictor:
def __init__(self, config: Dict[str, Any], cuda_id: int = 0):
self.cuda_id = cuda_id
self.flame_constants = config["constants"]
self.model = torch.jit.load(os.path.join(os.path.expanduser('~'), config["model_path"]))
self.model = to_device(self.model, self.cuda_id).eval()
self.head_mesh = HeadMesh(self.flame_constants)
self._img_size = config["img_size"]
self._stride = config.get("stride", 2)
def __call__(self, x: Any) -> Any:
cache = {}
x = self.preprocess(x, cache)
res = self.process(x, cache)
res = self.postprocess(res, cache)
return res
@staticmethod
def _array_to_batch(x: np.ndarray) -> Tensor:
x = np.transpose(x, (2, 0, 1))
x = np.expand_dims(x, 0)
return torch.from_numpy(x)
def preprocess(self, x: np.ndarray, cache: Dict[str, Any], *kw: Any) -> Tensor:
cache["input_shape"] = x.shape[:2]
x = self._transform(x)
x = self._array_to_batch(x)
return to_device(x, cuda_id=self.cuda_id)
def process(self, x: torch.Tensor, *kw: Any) -> Union[Tensor, Dict[str, Tensor]]:
with torch.no_grad():
res = self.model(x)
return res
def _parse_output(self, x: Dict[str, torch.Tensor]) -> Union[Tuple[np.ndarray, np.ndarray], np.ndarray]:
pred_3dmm = x[OUTPUT_3DMM_PARAMS]
pred_3dmm = pred_3dmm.detach().cpu()
if OUTPUT_2D_LANDMARKS in x.keys():
pred_landmarks = x[OUTPUT_2D_LANDMARKS].detach().cpu().numpy() * 256.0
elif OUTPUT_LANDMARKS_HEATMAP in x.keys():
pred_heatmap = x[OUTPUT_LANDMARKS_HEATMAP]
# yx to xy
pred_landmarks = unravel_index(torch.sigmoid(pred_heatmap).detach()).flip(-1)[0].cpu().numpy()
pred_landmarks = float(self._stride) * pred_landmarks
else:
return pred_3dmm
return pred_landmarks, pred_3dmm
def _get_paddings(self, cache: Dict[str, Any]) -> Tuple[List[int], float]:
h, w = cache["input_shape"]
max_side = max(h, w)
scale = self._img_size / float(max_side)
new_h, new_w = tuple(py3round(dim * scale) for dim in (h, w))
paddings = calculate_paddings(new_h, new_w)
return paddings, scale
def _get_predictions(
self, x: Union[Tuple[np.ndarray, np.ndarray], np.ndarray], cache: Dict[str, Any]
) -> Dict[str, Any]:
paddings, scale = self._get_paddings(cache)
if type(x) is tuple:
landmarks, pred_3dmm = x
landmarks = landmarks.clip(min=0, max=self._img_size)
landmarks = self.readjust_landmarks_to_the_input_image(landmarks, paddings, scale)
pred_3dmm = self.readjust_3dmm_to_the_input_image(pred_3dmm, paddings, scale)
vertices_3d = self.head_mesh.vertices_3d(pred_3dmm)[0].squeeze()
projected_vertices = self.head_mesh.reprojected_vertices(params_3dmm=pred_3dmm, to_2d=True)
return {"points": landmarks,
"projected_vertices": projected_vertices,
"3d_vertices": vertices_3d,
"3dmm_params": pred_3dmm}
pred_3dmm = self.readjust_3dmm_to_the_input_image(x, paddings, scale)
return {"3dmm_params": pred_3dmm}
def readjust_landmarks_to_the_input_image(
self, landmarks: np.ndarray, paddings: List[int], scale: float
) -> np.ndarray:
landmarks = landmarks - np.array([[paddings[2], paddings[0]]])
landmarks = (landmarks / scale).astype(int)
return landmarks
def readjust_3dmm_to_the_input_image(
self, pred_3dmm: torch.Tensor, paddings: List[int], scale: float
) -> torch.Tensor:
scale_idx = self.find_3dmm_idx("scale", self.flame_constants)
translation_idx = self.find_3dmm_idx("translation", self.flame_constants)
old_flame_params_scale = pred_3dmm[:, scale_idx: scale_idx + self.flame_constants["scale"]]
old_flame_params_translation = pred_3dmm[
:, translation_idx: translation_idx + self.flame_constants["translation"]
]
new_flame_params_scale = (old_flame_params_scale + 1.0) / scale - 1.0
new_flame_params_translation = (
old_flame_params_translation + 1.0 - torch.Tensor(
[[paddings[2], paddings[0], 0]]) * 2 / self._img_size
) / scale - 1.0
pred_3dmm[:, scale_idx: scale_idx + self.flame_constants["scale"]] = \
new_flame_params_scale
pred_3dmm[:, translation_idx: translation_idx + self.flame_constants["translation"]] = \
new_flame_params_translation
return pred_3dmm
@staticmethod
def find_3dmm_idx(key: str, consts: Dict[str, int]) -> int:
idx = 0
for k, v in consts.items():
if k != key:
idx += v
else:
break
return idx
def postprocess(self, x: Tuple[torch.Tensor, torch.Tensor], cache: Dict[str, Any], *kw: Any) -> Dict[str, Any]:
output = self._parse_output(x)
predictions = self._get_predictions(output, cache)
if "points" in predictions.keys():
predictions["points"] = np.reshape(predictions["points"], (-1, 2))
return predictions
def _transform(self, x: np.ndarray) -> np.ndarray:
aug = A.Compose(
[
A.LongestMaxSize(self._img_size, always_apply=True),
A.PadIfNeeded(self._img_size, self._img_size, border_mode=cv2.BORDER_CONSTANT, always_apply=True),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
return aug(image=x)["image"]
@classmethod
def dad_3dnet(cls):
config = load_yaml(get_relative_path("dad_3dnet.yaml", __file__))
if not model_exists():
logger.info("Downloading the model")
download_model(_PUBLIC_URL)
return FaceMeshPredictor(config=config)