-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppcg.c
1066 lines (933 loc) · 33.4 KB
/
ppcg.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright 2011 INRIA Saclay
* Copyright 2013 Ecole Normale Superieure
* Copyright 2015 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <isl/ctx.h>
#include <isl/id.h>
#include <isl/val.h>
#include <isl/set.h>
#include <isl/union_set.h>
#include <isl/union_map.h>
#include <isl/aff.h>
#include <isl/flow.h>
#include <isl/options.h>
#include <isl/schedule.h>
#include <isl/ast.h>
#include <isl/id_to_ast_expr.h>
#include <isl/ast_build.h>
#include <isl/schedule.h>
#include <pet.h>
#include "ppcg.h"
#include "ppcg_options.h"
#include "cuda.h"
#include "opencl.h"
#include "cpu.h"
struct options {
struct pet_options *pet;
struct ppcg_options *ppcg;
char *input;
char *output;
};
const char *ppcg_version(void);
static void print_version(void)
{
printf("%s", ppcg_version());
}
ISL_ARGS_START(struct options, options_args)
ISL_ARG_CHILD(struct options, pet, "pet", &pet_options_args, "pet options")
ISL_ARG_CHILD(struct options, ppcg, NULL, &ppcg_options_args, "ppcg options")
ISL_ARG_STR(struct options, output, 'o', NULL,
"filename", NULL, "output filename (c and opencl targets)")
ISL_ARG_ARG(struct options, input, "input", NULL)
ISL_ARG_VERSION(print_version)
ISL_ARGS_END
ISL_ARG_DEF(options, struct options, options_args)
/* Return a pointer to the final path component of "filename" or
* to "filename" itself if it does not contain any components.
*/
const char *ppcg_base_name(const char *filename)
{
const char *base;
base = strrchr(filename, '/');
if (base)
return ++base;
else
return filename;
}
/* Copy the base name of "input" to "name" and return its length.
* "name" is not NULL terminated.
*
* In particular, remove all leading directory components and
* the final extension, if any.
*/
int ppcg_extract_base_name(char *name, const char *input)
{
const char *base;
const char *ext;
int len;
base = ppcg_base_name(input);
ext = strrchr(base, '.');
len = ext ? ext - base : strlen(base);
memcpy(name, base, len);
return len;
}
/* Does "scop" refer to any arrays that are declared, but not
* exposed to the code after the scop?
*/
int ppcg_scop_any_hidden_declarations(struct ppcg_scop *scop)
{
int i;
if (!scop)
return 0;
for (i = 0; i < scop->pet->n_array; ++i)
if (scop->pet->arrays[i]->declared &&
!scop->pet->arrays[i]->exposed)
return 1;
return 0;
}
/* Collect all variable names that are in use in "scop".
* In particular, collect all parameters in the context and
* all the array names.
* Store these names in an isl_id_to_ast_expr by mapping
* them to a dummy value (0).
*/
static __isl_give isl_id_to_ast_expr *collect_names(struct pet_scop *scop)
{
int i, n;
isl_ctx *ctx;
isl_ast_expr *zero;
isl_id_to_ast_expr *names;
ctx = isl_set_get_ctx(scop->context);
n = isl_set_dim(scop->context, isl_dim_param);
names = isl_id_to_ast_expr_alloc(ctx, n + scop->n_array);
zero = isl_ast_expr_from_val(isl_val_zero(ctx));
for (i = 0; i < n; ++i) {
isl_id *id;
id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
names = isl_id_to_ast_expr_set(names,
id, isl_ast_expr_copy(zero));
}
for (i = 0; i < scop->n_array; ++i) {
struct pet_array *array = scop->arrays[i];
isl_id *id;
id = isl_set_get_tuple_id(array->extent);
names = isl_id_to_ast_expr_set(names,
id, isl_ast_expr_copy(zero));
}
isl_ast_expr_free(zero);
return names;
}
/* Return an isl_id called "prefix%d", with "%d" set to "i".
* If an isl_id with such a name already appears among the variable names
* of "scop", then adjust the name to "prefix%d_%d".
*/
static __isl_give isl_id *generate_name(struct ppcg_scop *scop,
const char *prefix, int i)
{
int j;
char name[16];
isl_ctx *ctx;
isl_id *id;
int has_name;
ctx = isl_set_get_ctx(scop->context);
snprintf(name, sizeof(name), "%s%d", prefix, i);
id = isl_id_alloc(ctx, name, NULL);
j = 0;
while ((has_name = isl_id_to_ast_expr_has(scop->names, id)) == 1) {
isl_id_free(id);
snprintf(name, sizeof(name), "%s%d_%d", prefix, i, j++);
id = isl_id_alloc(ctx, name, NULL);
}
return has_name < 0 ? isl_id_free(id) : id;
}
/* Return a list of "n" isl_ids of the form "prefix%d".
* If an isl_id with such a name already appears among the variable names
* of "scop", then adjust the name to "prefix%d_%d".
*/
__isl_give isl_id_list *ppcg_scop_generate_names(struct ppcg_scop *scop,
int n, const char *prefix)
{
int i;
isl_ctx *ctx;
isl_id_list *names;
ctx = isl_set_get_ctx(scop->context);
names = isl_id_list_alloc(ctx, n);
for (i = 0; i < n; ++i) {
isl_id *id;
id = generate_name(scop, prefix, i);
names = isl_id_list_add(names, id);
}
return names;
}
/* Is "stmt" not a kill statement?
*/
static int is_not_kill(struct pet_stmt *stmt)
{
return !pet_stmt_is_kill(stmt);
}
/* Collect the iteration domains of the statements in "scop" that
* satisfy "pred".
*/
static __isl_give isl_union_set *collect_domains(struct pet_scop *scop,
int (*pred)(struct pet_stmt *stmt))
{
int i;
isl_set *domain_i;
isl_union_set *domain;
if (!scop)
return NULL;
domain = isl_union_set_empty(isl_set_get_space(scop->context));
for (i = 0; i < scop->n_stmt; ++i) {
struct pet_stmt *stmt = scop->stmts[i];
if (!pred(stmt))
continue;
if (stmt->n_arg > 0)
isl_die(isl_union_set_get_ctx(domain),
isl_error_unsupported,
"data dependent conditions not supported",
return isl_union_set_free(domain));
domain_i = isl_set_copy(scop->stmts[i]->domain);
domain = isl_union_set_add_set(domain, domain_i);
}
return domain;
}
/* Collect the iteration domains of the statements in "scop",
* skipping kill statements.
*/
static __isl_give isl_union_set *collect_non_kill_domains(struct pet_scop *scop)
{
return collect_domains(scop, &is_not_kill);
}
/* This function is used as a callback to pet_expr_foreach_call_expr
* to detect if there is any call expression in the input expression.
* Assign the value 1 to the integer that "user" points to and
* abort the search since we have found what we were looking for.
*/
static int set_has_call(__isl_keep pet_expr *expr, void *user)
{
int *has_call = user;
*has_call = 1;
return -1;
}
/* Does "expr" contain any call expressions?
*/
static int expr_has_call(__isl_keep pet_expr *expr)
{
int has_call = 0;
if (pet_expr_foreach_call_expr(expr, &set_has_call, &has_call) < 0 &&
!has_call)
return -1;
return has_call;
}
/* This function is a callback for pet_tree_foreach_expr.
* If "expr" contains any call (sub)expressions, then set *has_call
* and abort the search.
*/
static int check_call(__isl_keep pet_expr *expr, void *user)
{
int *has_call = user;
if (expr_has_call(expr))
*has_call = 1;
return *has_call ? -1 : 0;
}
/* Does "stmt" contain any call expressions?
*/
static int has_call(struct pet_stmt *stmt)
{
int has_call = 0;
if (pet_tree_foreach_expr(stmt->body, &check_call, &has_call) < 0 &&
!has_call)
return -1;
return has_call;
}
/* Collect the iteration domains of the statements in "scop"
* that contain a call expression.
*/
static __isl_give isl_union_set *collect_call_domains(struct pet_scop *scop)
{
return collect_domains(scop, &has_call);
}
/* Given a union of "tagged" access relations of the form
*
* [S_i[...] -> R_j[]] -> A_k[...]
*
* project out the "tags" (R_j[]).
* That is, return a union of relations of the form
*
* S_i[...] -> A_k[...]
*/
static __isl_give isl_union_map *project_out_tags(
__isl_take isl_union_map *umap)
{
return isl_union_map_domain_factor_domain(umap);
}
/* Construct a function from tagged iteration domains to the corresponding
* untagged iteration domains with as range of the wrapped map in the domain
* the reference tags that appear in any of the reads, writes or kills.
* Store the result in ps->tagger.
*
* For example, if the statement with iteration space S[i,j]
* contains two array references R_1[] and R_2[], then ps->tagger will contain
*
* { [S[i,j] -> R_1[]] -> S[i,j]; [S[i,j] -> R_2[]] -> S[i,j] }
*/
static void compute_tagger(struct ppcg_scop *ps)
{
isl_union_map *tagged;
isl_union_pw_multi_aff *tagger;
tagged = isl_union_map_copy(ps->tagged_reads);
tagged = isl_union_map_union(tagged,
isl_union_map_copy(ps->tagged_may_writes));
tagged = isl_union_map_union(tagged,
isl_union_map_copy(ps->tagged_must_kills));
tagged = isl_union_map_universe(tagged);
tagged = isl_union_set_unwrap(isl_union_map_domain(tagged));
tagger = isl_union_map_domain_map_union_pw_multi_aff(tagged);
ps->tagger = tagger;
}
/* Compute the live out accesses, i.e., the writes that are
* potentially not killed by any kills or any other writes, and
* store them in ps->live_out.
*
* We compute the "dependence" of any "kill" (an explicit kill
* or a must write) on any may write.
* The elements accessed by the may writes with a "depending" kill
* also accessing the element are definitely killed.
* The remaining may writes can potentially be live out.
*
* The result of the dependence analysis is
*
* { IW -> [IK -> A] }
*
* with IW the instance of the write statement, IK the instance of kill
* statement and A the element that was killed.
* The range factor range is
*
* { IW -> A }
*
* containing all such pairs for which there is a kill statement instance,
* i.e., all pairs that have been killed.
*/
static void compute_live_out(struct ppcg_scop *ps)
{
isl_schedule *schedule;
isl_union_map *kills;
isl_union_map *exposed;
isl_union_map *covering;
isl_union_access_info *access;
isl_union_flow *flow;
schedule = isl_schedule_copy(ps->schedule);
kills = isl_union_map_union(isl_union_map_copy(ps->must_writes),
isl_union_map_copy(ps->must_kills));
access = isl_union_access_info_from_sink(kills);
access = isl_union_access_info_set_may_source(access,
isl_union_map_copy(ps->may_writes));
access = isl_union_access_info_set_schedule(access, schedule);
flow = isl_union_access_info_compute_flow(access);
covering = isl_union_flow_get_full_may_dependence(flow);
isl_union_flow_free(flow);
covering = isl_union_map_range_factor_range(covering);
exposed = isl_union_map_copy(ps->may_writes);
exposed = isl_union_map_subtract(exposed, covering);
ps->live_out = exposed;
}
/* Compute the tagged flow dependences and the live_in accesses and store
* the results in ps->tagged_dep_flow and ps->live_in.
*
* Both must-writes and must-kills are allowed to kill dependences
* from earlier writes to subsequent reads.
* The must-kills are not included in the potential sources, though.
* The flow dependences with a must-kill as source would
* reflect possibly uninitialized reads.
* No dependences need to be introduced to protect such reads
* (other than those imposed by potential flows from may writes
* that follow the kill). Those flow dependences are therefore not needed.
* The dead code elimination also assumes
* the flow sources are non-kill instances.
*/
static void compute_tagged_flow_dep_only(struct ppcg_scop *ps)
{
isl_union_pw_multi_aff *tagger;
isl_schedule *schedule;
isl_union_map *live_in;
isl_union_access_info *access;
isl_union_flow *flow;
isl_union_map *must_source;
isl_union_map *kills;
isl_union_map *tagged_flow;
tagger = isl_union_pw_multi_aff_copy(ps->tagger);
schedule = isl_schedule_copy(ps->schedule);
schedule = isl_schedule_pullback_union_pw_multi_aff(schedule, tagger);
kills = isl_union_map_copy(ps->tagged_must_kills);
must_source = isl_union_map_copy(ps->tagged_must_writes);
kills = isl_union_map_union(kills, must_source);
access = isl_union_access_info_from_sink(
isl_union_map_copy(ps->tagged_reads));
access = isl_union_access_info_set_kill(access, kills);
access = isl_union_access_info_set_may_source(access,
isl_union_map_copy(ps->tagged_may_writes));
access = isl_union_access_info_set_schedule(access, schedule);
flow = isl_union_access_info_compute_flow(access);
tagged_flow = isl_union_flow_get_may_dependence(flow);
ps->tagged_dep_flow = tagged_flow;
live_in = isl_union_flow_get_may_no_source(flow);
ps->live_in = project_out_tags(live_in);
isl_union_flow_free(flow);
}
/* Compute ps->dep_flow from ps->tagged_dep_flow
* by projecting out the reference tags.
*/
static void derive_flow_dep_from_tagged_flow_dep(struct ppcg_scop *ps)
{
ps->dep_flow = isl_union_map_copy(ps->tagged_dep_flow);
ps->dep_flow = isl_union_map_factor_domain(ps->dep_flow);
}
/* Compute the flow dependences and the live_in accesses and store
* the results in ps->dep_flow and ps->live_in.
* A copy of the flow dependences, tagged with the reference tags
* is stored in ps->tagged_dep_flow.
*
* We first compute ps->tagged_dep_flow, i.e., the tagged flow dependences
* and then project out the tags.
*/
static void compute_tagged_flow_dep(struct ppcg_scop *ps)
{
compute_tagged_flow_dep_only(ps);
derive_flow_dep_from_tagged_flow_dep(ps);
}
/* Compute the order dependences that prevent the potential live ranges
* from overlapping.
*
* In particular, construct a union of relations
*
* [R[...] -> R_1[]] -> [W[...] -> R_2[]]
*
* where [R[...] -> R_1[]] is the range of one or more live ranges
* (i.e., a read) and [W[...] -> R_2[]] is the domain of one or more
* live ranges (i.e., a write). Moreover, the read and the write
* access the same memory element and the read occurs before the write
* in the original schedule.
* The scheduler allows some of these dependences to be violated, provided
* the adjacent live ranges are all local (i.e., their domain and range
* are mapped to the same point by the current schedule band).
*
* Note that if a live range is not local, then we need to make
* sure it does not overlap with _any_ other live range, and not
* just with the "previous" and/or the "next" live range.
* We therefore add order dependences between reads and
* _any_ later potential write.
*
* We also need to be careful about writes without a corresponding read.
* They are already prevented from moving past non-local preceding
* intervals, but we also need to prevent them from moving past non-local
* following intervals. We therefore also add order dependences from
* potential writes that do not appear in any intervals
* to all later potential writes.
* Note that dead code elimination should have removed most of these
* dead writes, but the dead code elimination may not remove all dead writes,
* so we need to consider them to be safe.
*
* The order dependences are computed by computing the "dataflow"
* from the above unmatched writes and the reads to the may writes.
* The unmatched writes and the reads are treated as may sources
* such that they would not kill order dependences from earlier
* such writes and reads.
*/
static void compute_order_dependences(struct ppcg_scop *ps)
{
isl_union_map *reads;
isl_union_map *shared_access;
isl_union_set *matched;
isl_union_map *unmatched;
isl_union_pw_multi_aff *tagger;
isl_schedule *schedule;
isl_union_access_info *access;
isl_union_flow *flow;
tagger = isl_union_pw_multi_aff_copy(ps->tagger);
schedule = isl_schedule_copy(ps->schedule);
schedule = isl_schedule_pullback_union_pw_multi_aff(schedule, tagger);
reads = isl_union_map_copy(ps->tagged_reads);
matched = isl_union_map_domain(isl_union_map_copy(ps->tagged_dep_flow));
unmatched = isl_union_map_copy(ps->tagged_may_writes);
unmatched = isl_union_map_subtract_domain(unmatched, matched);
reads = isl_union_map_union(reads, unmatched);
access = isl_union_access_info_from_sink(
isl_union_map_copy(ps->tagged_may_writes));
access = isl_union_access_info_set_may_source(access, reads);
access = isl_union_access_info_set_schedule(access, schedule);
flow = isl_union_access_info_compute_flow(access);
shared_access = isl_union_flow_get_may_dependence(flow);
isl_union_flow_free(flow);
ps->tagged_dep_order = isl_union_map_copy(shared_access);
ps->dep_order = isl_union_map_factor_domain(shared_access);
}
/* Compute those validity dependences of the program represented by "scop"
* that should be unconditionally enforced even when live-range reordering
* is used.
*
* In particular, compute the external false dependences
* as well as order dependences between sources with the same sink.
* The anti-dependences are already taken care of by the order dependences.
* The external false dependences are only used to ensure that live-in and
* live-out data is not overwritten by any writes inside the scop.
* The independences are removed from the external false dependences,
* but not from the order dependences between sources with the same sink.
*
* In particular, the reads from live-in data need to precede any
* later write to the same memory element.
* As to live-out data, the last writes need to remain the last writes.
* That is, any earlier write in the original schedule needs to precede
* the last write to the same memory element in the computed schedule.
* The possible last writes have been computed by compute_live_out.
* They may include kills, but if the last access is a kill,
* then the corresponding dependences will effectively be ignored
* since we do not schedule any kill statements.
*
* Note that the set of live-in and live-out accesses may be
* an overapproximation. There may therefore be potential writes
* before a live-in access and after a live-out access.
*
* In the presence of may-writes, there may be multiple live-ranges
* with the same sink, accessing the same memory element.
* The sources of these live-ranges need to be executed
* in the same relative order as in the original program
* since we do not know which of the may-writes will actually
* perform a write. Consider all sources that share a sink and
* that may write to the same memory element and compute
* the order dependences among them.
*/
static void compute_forced_dependences(struct ppcg_scop *ps)
{
isl_union_map *shared_access;
isl_union_map *exposed;
isl_union_map *live_in;
isl_union_map *sink_access;
isl_union_map *shared_sink;
isl_union_access_info *access;
isl_union_flow *flow;
isl_schedule *schedule;
exposed = isl_union_map_copy(ps->live_out);
schedule = isl_schedule_copy(ps->schedule);
access = isl_union_access_info_from_sink(exposed);
access = isl_union_access_info_set_may_source(access,
isl_union_map_copy(ps->may_writes));
access = isl_union_access_info_set_schedule(access, schedule);
flow = isl_union_access_info_compute_flow(access);
shared_access = isl_union_flow_get_may_dependence(flow);
isl_union_flow_free(flow);
ps->dep_forced = shared_access;
schedule = isl_schedule_copy(ps->schedule);
access = isl_union_access_info_from_sink(
isl_union_map_copy(ps->may_writes));
access = isl_union_access_info_set_may_source(access,
isl_union_map_copy(ps->live_in));
access = isl_union_access_info_set_schedule(access, schedule);
flow = isl_union_access_info_compute_flow(access);
live_in = isl_union_flow_get_may_dependence(flow);
isl_union_flow_free(flow);
ps->dep_forced = isl_union_map_union(ps->dep_forced, live_in);
ps->dep_forced = isl_union_map_subtract(ps->dep_forced,
isl_union_map_copy(ps->independence));
schedule = isl_schedule_copy(ps->schedule);
sink_access = isl_union_map_copy(ps->tagged_dep_flow);
sink_access = isl_union_map_range_product(sink_access,
isl_union_map_copy(ps->tagged_may_writes));
sink_access = isl_union_map_domain_factor_domain(sink_access);
access = isl_union_access_info_from_sink(
isl_union_map_copy(sink_access));
access = isl_union_access_info_set_may_source(access, sink_access);
access = isl_union_access_info_set_schedule(access, schedule);
flow = isl_union_access_info_compute_flow(access);
shared_sink = isl_union_flow_get_may_dependence(flow);
isl_union_flow_free(flow);
ps->dep_forced = isl_union_map_union(ps->dep_forced, shared_sink);
}
/* Remove independence from the tagged flow dependences.
* Since the user has guaranteed that source and sink of an independence
* can be executed in any order, there cannot be a flow dependence
* between them, so they can be removed from the set of flow dependences.
* However, if the source of such a flow dependence is a must write,
* then it may have killed other potential sources, which would have
* to be recovered if we were to remove those flow dependences.
* We therefore keep the flow dependences that originate in a must write,
* even if it corresponds to a known independence.
*/
static void remove_independences_from_tagged_flow(struct ppcg_scop *ps)
{
isl_union_map *tf;
isl_union_set *indep;
isl_union_set *mw;
tf = isl_union_map_copy(ps->tagged_dep_flow);
tf = isl_union_map_zip(tf);
indep = isl_union_map_wrap(isl_union_map_copy(ps->independence));
tf = isl_union_map_intersect_domain(tf, indep);
tf = isl_union_map_zip(tf);
mw = isl_union_map_domain(isl_union_map_copy(ps->tagged_must_writes));
tf = isl_union_map_subtract_domain(tf, mw);
ps->tagged_dep_flow = isl_union_map_subtract(ps->tagged_dep_flow, tf);
}
/* Compute the dependences of the program represented by "scop"
* in case live range reordering is allowed.
*
* We compute the actual live ranges and the corresponding order
* false dependences.
*
* The independences are removed from the flow dependences
* (provided the source is not a must-write) as well as
* from the external false dependences (by compute_forced_dependences).
*/
static void compute_live_range_reordering_dependences(struct ppcg_scop *ps)
{
compute_tagged_flow_dep_only(ps);
remove_independences_from_tagged_flow(ps);
derive_flow_dep_from_tagged_flow_dep(ps);
compute_order_dependences(ps);
compute_forced_dependences(ps);
}
/* Compute the potential flow dependences and the potential live in
* accesses.
*
* Both must-writes and must-kills are allowed to kill dependences
* from earlier writes to subsequent reads, as in compute_tagged_flow_dep_only.
*/
static void compute_flow_dep(struct ppcg_scop *ps)
{
isl_union_access_info *access;
isl_union_flow *flow;
isl_union_map *kills, *must_writes;
access = isl_union_access_info_from_sink(isl_union_map_copy(ps->reads));
kills = isl_union_map_copy(ps->must_kills);
must_writes = isl_union_map_copy(ps->must_writes);
kills = isl_union_map_union(kills, must_writes);
access = isl_union_access_info_set_kill(access, kills);
access = isl_union_access_info_set_may_source(access,
isl_union_map_copy(ps->may_writes));
access = isl_union_access_info_set_schedule(access,
isl_schedule_copy(ps->schedule));
flow = isl_union_access_info_compute_flow(access);
ps->dep_flow = isl_union_flow_get_may_dependence(flow);
ps->live_in = isl_union_flow_get_may_no_source(flow);
isl_union_flow_free(flow);
}
/* Compute the dependences of the program represented by "scop".
* Store the computed potential flow dependences
* in scop->dep_flow and the reads with potentially no corresponding writes in
* scop->live_in.
* Store the potential live out accesses in scop->live_out.
* Store the potential false (anti and output) dependences in scop->dep_false.
*
* If live range reordering is allowed, then we compute a separate
* set of order dependences and a set of external false dependences
* in compute_live_range_reordering_dependences.
*/
static void compute_dependences(struct ppcg_scop *scop)
{
isl_union_map *may_source;
isl_union_access_info *access;
isl_union_flow *flow;
if (!scop)
return;
compute_live_out(scop);
if (scop->options->live_range_reordering)
compute_live_range_reordering_dependences(scop);
else if (scop->options->target != PPCG_TARGET_C)
compute_tagged_flow_dep(scop);
else
compute_flow_dep(scop);
may_source = isl_union_map_union(isl_union_map_copy(scop->may_writes),
isl_union_map_copy(scop->reads));
access = isl_union_access_info_from_sink(
isl_union_map_copy(scop->may_writes));
access = isl_union_access_info_set_kill(access,
isl_union_map_copy(scop->must_writes));
access = isl_union_access_info_set_may_source(access, may_source);
access = isl_union_access_info_set_schedule(access,
isl_schedule_copy(scop->schedule));
flow = isl_union_access_info_compute_flow(access);
scop->dep_false = isl_union_flow_get_may_dependence(flow);
scop->dep_false = isl_union_map_coalesce(scop->dep_false);
isl_union_flow_free(flow);
}
/* Eliminate dead code from ps->domain.
*
* In particular, intersect both ps->domain and the domain of
* ps->schedule with the (parts of) iteration
* domains that are needed to produce the output or for statement
* iterations that call functions.
* Also intersect the range of the dataflow dependences with
* this domain such that the removed instances will no longer
* be considered as targets of dataflow.
*
* We start with the iteration domains that call functions
* and the set of iterations that last write to an array
* (except those that are later killed).
*
* Then we add those statement iterations that produce
* something needed by the "live" statements iterations.
* We keep doing this until no more statement iterations can be added.
* To ensure that the procedure terminates, we compute the affine
* hull of the live iterations (bounded to the original iteration
* domains) each time we have added extra iterations.
*/
static void eliminate_dead_code(struct ppcg_scop *ps)
{
isl_union_set *live;
isl_union_map *dep;
isl_union_pw_multi_aff *tagger;
live = isl_union_map_domain(isl_union_map_copy(ps->live_out));
if (!isl_union_set_is_empty(ps->call)) {
live = isl_union_set_union(live, isl_union_set_copy(ps->call));
live = isl_union_set_coalesce(live);
}
dep = isl_union_map_copy(ps->dep_flow);
dep = isl_union_map_reverse(dep);
for (;;) {
isl_union_set *extra;
extra = isl_union_set_apply(isl_union_set_copy(live),
isl_union_map_copy(dep));
if (isl_union_set_is_subset(extra, live)) {
isl_union_set_free(extra);
break;
}
live = isl_union_set_union(live, extra);
live = isl_union_set_affine_hull(live);
live = isl_union_set_intersect(live,
isl_union_set_copy(ps->domain));
}
isl_union_map_free(dep);
ps->domain = isl_union_set_intersect(ps->domain,
isl_union_set_copy(live));
ps->schedule = isl_schedule_intersect_domain(ps->schedule,
isl_union_set_copy(live));
ps->dep_flow = isl_union_map_intersect_range(ps->dep_flow,
isl_union_set_copy(live));
tagger = isl_union_pw_multi_aff_copy(ps->tagger);
live = isl_union_set_preimage_union_pw_multi_aff(live, tagger);
ps->tagged_dep_flow = isl_union_map_intersect_range(ps->tagged_dep_flow,
live);
}
/* Intersect "set" with the set described by "str", taking the NULL
* string to represent the universal set.
*/
static __isl_give isl_set *set_intersect_str(__isl_take isl_set *set,
const char *str)
{
isl_ctx *ctx;
isl_set *set2;
if (!str)
return set;
ctx = isl_set_get_ctx(set);
set2 = isl_set_read_from_str(ctx, str);
set = isl_set_intersect(set, set2);
return set;
}
static void *ppcg_scop_free(struct ppcg_scop *ps)
{
if (!ps)
return NULL;
isl_set_free(ps->context);
isl_union_set_free(ps->domain);
isl_union_set_free(ps->call);
isl_union_map_free(ps->tagged_reads);
isl_union_map_free(ps->reads);
isl_union_map_free(ps->live_in);
isl_union_map_free(ps->tagged_may_writes);
isl_union_map_free(ps->tagged_must_writes);
isl_union_map_free(ps->may_writes);
isl_union_map_free(ps->must_writes);
isl_union_map_free(ps->live_out);
isl_union_map_free(ps->tagged_must_kills);
isl_union_map_free(ps->must_kills);
isl_union_map_free(ps->tagged_dep_flow);
isl_union_map_free(ps->dep_flow);
isl_union_map_free(ps->dep_false);
isl_union_map_free(ps->dep_forced);
isl_union_map_free(ps->tagged_dep_order);
isl_union_map_free(ps->dep_order);
isl_schedule_free(ps->schedule);
isl_union_pw_multi_aff_free(ps->tagger);
isl_union_map_free(ps->independence);
isl_id_to_ast_expr_free(ps->names);
free(ps);
return NULL;
}
/* Extract a ppcg_scop from a pet_scop.
*
* The constructed ppcg_scop refers to elements from the pet_scop
* so the pet_scop should not be freed before the ppcg_scop.
*/
static struct ppcg_scop *ppcg_scop_from_pet_scop(struct pet_scop *scop,
struct ppcg_options *options)
{
int i;
isl_ctx *ctx;
struct ppcg_scop *ps;
if (!scop)
return NULL;
ctx = isl_set_get_ctx(scop->context);
ps = isl_calloc_type(ctx, struct ppcg_scop);
if (!ps)
return NULL;
ps->names = collect_names(scop);
ps->options = options;
ps->start = pet_loc_get_start(scop->loc);
ps->end = pet_loc_get_end(scop->loc);
ps->context = isl_set_copy(scop->context);
ps->context = set_intersect_str(ps->context, options->ctx);
if (options->non_negative_parameters) {
isl_space *space = isl_set_get_space(ps->context);
isl_set *nn = isl_set_nat_universe(space);
ps->context = isl_set_intersect(ps->context, nn);
}
ps->domain = collect_non_kill_domains(scop);
ps->call = collect_call_domains(scop);
ps->tagged_reads = pet_scop_get_tagged_may_reads(scop);
ps->reads = pet_scop_get_may_reads(scop);
ps->tagged_may_writes = pet_scop_get_tagged_may_writes(scop);
ps->may_writes = pet_scop_get_may_writes(scop);
ps->tagged_must_writes = pet_scop_get_tagged_must_writes(scop);
ps->must_writes = pet_scop_get_must_writes(scop);
ps->tagged_must_kills = pet_scop_get_tagged_must_kills(scop);
ps->must_kills = pet_scop_get_must_kills(scop);
ps->schedule = isl_schedule_copy(scop->schedule);
ps->pet = scop;
ps->independence = isl_union_map_empty(isl_set_get_space(ps->context));
for (i = 0; i < scop->n_independence; ++i)
ps->independence = isl_union_map_union(ps->independence,
isl_union_map_copy(scop->independences[i]->filter));
compute_tagger(ps);
compute_dependences(ps);
eliminate_dead_code(ps);
if (!ps->context || !ps->domain || !ps->call || !ps->reads ||
!ps->may_writes || !ps->must_writes || !ps->tagged_must_kills ||
!ps->must_kills || !ps->schedule || !ps->independence || !ps->names)
return ppcg_scop_free(ps);
return ps;
}
/* Internal data structure for ppcg_transform.
*/
struct ppcg_transform_data {
struct ppcg_options *options;
__isl_give isl_printer *(*transform)(__isl_take isl_printer *p,
struct ppcg_scop *scop, void *user);
void *user;
};
/* Should we print the original code?
* That is, does "scop" involve any data dependent conditions or
* nested expressions that cannot be handled by pet_stmt_build_ast_exprs?
*/
static int print_original(struct pet_scop *scop, struct ppcg_options *options)
{
if (!pet_scop_can_build_ast_exprs(scop)) {
if (options->debug->verbose)
fprintf(stdout, "Printing original code because "
"some index expressions cannot currently "
"be printed\n");
return 1;
}
if (pet_scop_has_data_dependent_conditions(scop)) {
if (options->debug->verbose)
fprintf(stdout, "Printing original code because "
"input involves data dependent conditions\n");
return 1;
}
return 0;
}
/* Callback for pet_transform_C_source that transforms
* the given pet_scop to a ppcg_scop before calling the
* ppcg_transform callback.
*
* If "scop" contains any data dependent conditions or if we may
* not be able to print the transformed program, then just print
* the original code.
*/
static __isl_give isl_printer *transform(__isl_take isl_printer *p,
struct pet_scop *scop, void *user)
{
struct ppcg_transform_data *data = user;
struct ppcg_scop *ps;
if (print_original(scop, data->options)) {
p = pet_scop_print_original(scop, p);
pet_scop_free(scop);
return p;
}
scop = pet_scop_align_params(scop);
ps = ppcg_scop_from_pet_scop(scop, data->options);
p = data->transform(p, ps, data->user);
ppcg_scop_free(ps);
pet_scop_free(scop);
return p;
}
/* Transform the C source file "input" by rewriting each scop
* through a call to "transform".
* The transformed C code is written to "out".
*
* This is a wrapper around pet_transform_C_source that transforms