-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp_linear_regression.py
154 lines (138 loc) · 6.79 KB
/
p_linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from sklearn import __version__ as SKLEARN_VERSION
print("Sklearn's version:", SKLEARN_VERSION)
from sklearn.linear_model import LinearRegression as SkLinearRegression
from scipy import stats
import numpy as np
class SKOLS(SkLinearRegression):
def __init__(self, fit_intercept=False, normalize=False, copy_X=True, n_jobs=1, positive=False):
if int(SKLEARN_VERSION.split('.')[1]) > 1:
super(SKOLS, self).__init__(fit_intercept=fit_intercept,
copy_X=copy_X,
n_jobs=n_jobs,
positive=positive)
self.normalize = normalize
if not fit_intercept:
self.normalize = False
else:
super(SKOLS, self).__init__(fit_intercept=fit_intercept,
normalize=normalize,
copy_X=copy_X,
n_jobs=n_jobs,
positive=positive)
def fit(self, X, y, n_jobs=1):
if int(SKLEARN_VERSION.split('.')[1]) > 1:
if self.normalize:
X_mean = X.mean(axis=0)
X_scale = X-X_mean
l2norm = np.linalg.norm(X_scale, ord=2, axis=0)
X_scale = X_scale/l2norm
else:
X_scale = X
self = super(SKOLS, self).fit(X_scale, y, n_jobs)
if self.normalize:
self.coef_ /= l2norm
self.intercept_ += (-X_mean*self.coef_).sum()
else:
self = super(SKOLS, self).fit(X, y, n_jobs)
return self
class PLinearRegression(SkLinearRegression):
"""
LinearRegression class after sklearn's, but calculate t-statistics
and p-values for model parameters (betas).
"""
def __init__(self, fit_intercept=False, normalize=False, copy_X=True, n_jobs=1, positive=False):
if int(SKLEARN_VERSION.split('.')[1]) < 2:
super(PLinearRegression, self).__init__(fit_intercept=fit_intercept,
normalize=normalize,
copy_X=copy_X,
n_jobs=n_jobs,
positive=positive)
else:
super(PLinearRegression, self).__init__(fit_intercept=fit_intercept,
copy_X=copy_X,
n_jobs=n_jobs,
positive=positive)
if normalize:
print(f"Since sklearn's version {SKLEARN_VERSION} is being used, the normalize arg has no effect.")
self.se = None
self.t = None
self.p = None
self.feature_importances_ = None
def fit(self, X, y, n_jobs=1):
self = super(PLinearRegression, self).fit(X, y, n_jobs)
sse = np.sum((self.predict(X) - y) ** 2, axis=0) / float(X.shape[0] - X.shape[1])
self.se = np.array([np.sqrt(np.diagonal(sse * np.linalg.inv(np.dot(X.T, X))))])
self.t = self.coef_ / self.se
self.p = 2 * (1 - stats.t.cdf(np.abs(self.t), y.shape[0] - X.shape[1]))
self.se = self.se.ravel()
self.t = self.t.ravel()
self.p = self.p.ravel()
self.feature_importances_ = 1-self.p
self.feature_importances_ = self.feature_importances_/self.feature_importances_.sum()
return self
### For nPIML ###
#class MLinearRegression(SkLinearRegression):
# """
# LinearRegression class after sklearn's LinearRegression
# """
# def __init__(self, fit_intercept=False, normalize=False, copy_X=True, n_jobs=1, positive=False):
# if int(SKLEARN_VERSION.split('.')[1]) < 2:
# super(MLinearRegression, self).__init__(fit_intercept=fit_intercept,
# normalize=normalize,
# copy_X=copy_X,
# n_jobs=n_jobs,
# positive=positive)
# else:
# super(MLinearRegression, self).__init__(fit_intercept=fit_intercept,
# copy_X=copy_X,
# n_jobs=n_jobs,
# positive=positive)
# if normalize:
# print(f"Since sklearn's version {SKLEARN_VERSION} is being used, the normalize arg has no effect.")
# self.normalize = normalize
#
# self.feature_importances_ = None
#
# def fit(self, X, y, n_jobs=1):
# self = super(MLinearRegression, self).fit(X, y, n_jobs)
# n_cols = X.shape[1]
# ref_mse = ((y-self.predict(X))**2).mean()
# scores = []
# if n_cols > 1:
# for j in range(n_cols):
# X_tmp = X[:, list(range(j))+list(range(j+1, n_cols))]
# sub_model = super(MLinearRegression, self).fit(X_tmp, y, n_jobs)
# sub_model_mse = ((y-sub_model.predict(X_tmp))**2).mean()
# scores.append(sub_model_mse-ref_mse)
# else:
# for j in range(n_cols):
# scores.append(1.0)
# self.feature_importances_ = np.array(scores)
# return self
class MLinearRegression(SKOLS):
"""
LinearRegression class after sklearn's LinearRegression
"""
def __init__(self, fit_intercept=False, normalize=False, copy_X=True, n_jobs=1, positive=False):
super(MLinearRegression, self).__init__(fit_intercept=fit_intercept,
normalize=normalize,
copy_X=copy_X,
n_jobs=n_jobs,
positive=positive)
self.feature_importances_ = None
def fit(self, X, y, n_jobs=1):
self = super(MLinearRegression, self).fit(X, y, n_jobs)
n_cols = X.shape[1]
ref_mse = ((y-self.predict(X))**2).mean()
scores = []
if n_cols > 1:
for j in range(n_cols):
X_tmp = X[:, list(range(j))+list(range(j+1, n_cols))]
sub_model = super(MLinearRegression, self).fit(X_tmp, y, n_jobs)
sub_model_mse = ((y-sub_model.predict(X_tmp))**2).mean()
scores.append(sub_model_mse-ref_mse)
else:
for j in range(n_cols):
scores.append(1.0)
self.feature_importances_ = np.array(scores)
return self