-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsgolay2.py
184 lines (135 loc) · 5.25 KB
/
sgolay2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# -*- coding: utf-8 -*-
"""
Two-dimensional Savitzky-Golay filter
Originally from https://github.com/espdev/sgolay2
"""
import collections
import typing as t
import numpy as np
import numpy.linalg as la
import scipy.ndimage as ndim
Param2 = collections.namedtuple('Param2', ('row', 'column'))
Polynom2 = collections.namedtuple('Polynom2', ('row_pows', 'column_pows', 'num_coeffs'))
_Param2Type = t.Union[Param2, t.Tuple[int, int]]
_ParamType = t.Union[int, _Param2Type]
_DIM = 2
class SGolayKernel2:
"""Computes two-dimensional kernel (weights) for Savitzky-Golay filter
"""
def __init__(self, window_size: _Param2Type, poly_order: _Param2Type):
self._window_size = Param2(*window_size)
self._poly_order = Param2(*poly_order)
self._kernel = None # type: np.ndarray
self.computed = False
def __call__(self):
self.compute()
def compute(self):
if self.computed:
return
polynom = self._make_polynom(self._poly_order)
basis_matrix = self._make_basis_matrix(self._window_size, polynom)
self._kernel = self._compute_kernel(self._window_size, basis_matrix)
self.computed = True
@property
def kernel(self) -> np.ndarray:
"""Returns 2D Savitzky-Golay kernel
"""
self.compute()
return self._kernel
@staticmethod
def _make_polynom(poly_order: Param2) -> Polynom2:
"""
Creates 2-D polynom model (for example poly33):
p = a00 + a10x + a01y + a20x^2 + a11xy + a02y^2 + a30x^3 + a21x^2y \
+ a12xy^2 + a03y^3
"""
row_pows = []
column_pows = []
num_coeffs = 0
for row in range(poly_order.row + 1):
for column in range(poly_order.column + 1):
if (row + column) > max(*poly_order):
continue
row_pows.append(row)
column_pows.append(column)
num_coeffs += 1
return Polynom2(row_pows, column_pows, num_coeffs)
@staticmethod
def _make_basis_matrix(window_size: Param2, poly: Polynom2) -> np.ndarray:
"""Creates basis polynomial matrix
"""
basis_rows = window_size.row * window_size.column
basis_columns = poly.num_coeffs
basis_matrix = np.zeros((basis_rows, basis_columns))
radius_row = (window_size.row - 1) // 2
radius_column = (window_size.column - 1) // 2
row_pows = np.array(poly.row_pows)
column_pows = np.array(poly.column_pows)
k = 0
for row in range(-radius_row, radius_row + 1):
for column in range(-radius_column, radius_column + 1):
basis_matrix[k, :] = column ** column_pows * row ** row_pows
k += 1
return basis_matrix
@staticmethod
def _compute_kernel(window_size: Param2,
basis_matrix: np.ndarray) -> np.ndarray:
"""Computes filter 2D kernel via solving least squares problem
"""
q, _ = la.qr(basis_matrix)
iq = (window_size.row * window_size.column - 1) // 2
kernel = q @ np.array(q[iq, :], ndmin=2).T
kernel = np.fliplr(kernel.reshape(*window_size, order='F'))
return kernel
class SGolayFilter2:
"""Two-dimensional Savitzky-Golay filter
"""
def __init__(self, window_size: _ParamType, poly_order: _ParamType):
self._window_size = self._canonize_param(
'window_size', window_size, self._validate_window_size)
self._poly_order = self._canonize_param(
'poly_order', poly_order, self._validate_poly_order)
self._kernel = SGolayKernel2(self._window_size, self._poly_order)
def __call__(self, data: np.ndarray,
mode: str = 'reflect', cval: float = 0.0):
return self._filtrate(data, mode=mode, cval=cval)
@property
def window_size(self) -> Param2:
return self._window_size
@property
def poly_order(self) -> Param2:
return self._poly_order
@property
def kernel(self) -> SGolayKernel2:
"""Returns filter 2D kernel
"""
return self._kernel
@staticmethod
def _canonize_param(name, value: _ParamType, validator) -> Param2:
err = TypeError(
'The parameter "{}" must be int scalar or Tuple[int, int]'.format(
name))
if isinstance(value, int):
value = (value, value)
if not isinstance(value, (list, tuple)):
raise err
if len(value) != _DIM:
raise err
if not all(isinstance(v, int) for v in value):
raise err
validator(value)
return Param2(*value)
@staticmethod
def _validate_window_size(value):
if not all(v >= 3 and bool(v % 2) for v in value):
raise ValueError(
'Window size values must be odd and >= 3 (Given: {})'.format(
value))
@staticmethod
def _validate_poly_order(value):
if not all(v >= 1 for v in value):
raise ValueError(
'Polynom order values must be >= 1 (Given: {})'.format(value))
def _filtrate(self, data: np.ndarray, *args, **kwargs):
self._kernel.compute()
return ndim.correlate(data, self._kernel.kernel, *args, **kwargs)