-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvec3.h
152 lines (119 loc) · 3.64 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#ifndef RAYTRACER_VEC3_H
#define RAYTRACER_VEC3_H
#include <cmath>
#include <iostream>
#include "mathutils.h"
class Vec3 {
public:
double e[3];
Vec3() : e{0, 0, 0} {}
Vec3(double x, double y, double z) : e{x, y, z} {}
double x() const { return e[0]; }
double y() const { return e[1]; }
double z() const { return e[2]; }
Vec3 operator-() const { return Vec3(-e[0], -e[1], -e[2]); }
double operator[](int i) const { return e[i]; }
double& operator[](int i) { return e[i]; }
Vec3& operator+=(const Vec3 &v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
Vec3& operator*=(const double t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
Vec3& operator/=(const double t) {
return *this *= 1/t;
}
[[nodiscard]] double lengthSquared() const {
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
[[nodiscard]] double length() const {
return sqrt(lengthSquared());
}
bool nearZero() const {
auto s = 1e-8;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
static Vec3 random() {
return {randomDouble(), randomDouble(), randomDouble()};
}
static Vec3 random(double min, double max) {
return {randomDouble(min, max), randomDouble(min, max), randomDouble(min, max)};
}
};
using Point3 = Vec3; // 3D point
// Vector Util Functions
inline std::ostream& operator<<(std::ostream &out, const Vec3 &v) {
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline Vec3 operator+(const Vec3 &u, const Vec3 &v) {
return Vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline Vec3 operator-(const Vec3 &u, const Vec3 &v) {
return Vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline Vec3 operator*(const Vec3 &u, const Vec3 &v) {
return Vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline Vec3 operator*(double t, const Vec3 &v) {
return Vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline Vec3 operator*(const Vec3 &v, double t) {
return t * v;
}
inline Vec3 operator/(const Vec3 &v, double t) {
return (1/t) * v;
}
inline double dot(const Vec3 &u, const Vec3 &v) {
return u.e[0]*v.e[0]
+ u.e[1]*v.e[1]
+ u.e[2]*v.e[2];
}
inline Vec3 cross(const Vec3 &u, const Vec3 &v) {
return Vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2]*v.e[0] - u.e[0]*v.e[2],
u.e[0]*v.e[1] - u.e[1]*v.e[0]);
}
inline Vec3 unitVector(Vec3 v) {
return v / v.length();
}
inline Vec3 randomInUnitDisk() {
while (true) {
auto p = Vec3(randomDouble(-1, 1), randomDouble(-1, 1), 0);
if (p.lengthSquared() < 1)
return p;
}
}
inline Vec3 randomInUnitSphere() {
while (true) {
auto p = Vec3::random(-1, 1);
if (p.lengthSquared() < 1)
return p;
}
}
inline Vec3 randomUnitVector() {
return unitVector(randomInUnitSphere());
}
inline Vec3 randomOnHemisphere(const Vec3& normal) {
Vec3 onUnitSphere = randomUnitVector();
if (dot(onUnitSphere, normal) > 0.0) {
return onUnitSphere; // In the same hemisphere as the normal
} else {
return -onUnitSphere;
}
}
inline Vec3 reflect(const Vec3& v, const Vec3& n) {
return v - 2*dot(v, n)*n;
}
inline Vec3 refract(const Vec3& uv, const Vec3& n, double etai_over_etat) {
auto cos_theta = fmin(dot(-uv, n), 1.0);
Vec3 r_out_perp = etai_over_etat * (uv + cos_theta*n);
Vec3 r_out_parallel = -sqrt(fabs(1.0 - r_out_perp.lengthSquared())) * n;
return r_out_perp + r_out_parallel;
}
#endif //RAYTRACER_VEC3_H