-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
90 lines (70 loc) · 4 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from __future__ import print_function
import sys
from argparse import Namespace
import torch.nn.functional as F
import torch
from commonTraining import kl_divergence, kl_discrete, log_sum_exp, \
print_in_epoch_summary, print_epoch_summary, mse_loss
from utils import logit
import numpy as np
SMALL = 1e-16
def nll_and_kl(recon_x, x, log_likelihood, a, b, logsample, z_discrete, logit_post, log_prior, mu, logvar, dataset_size, args=Namespace(), test=False):
batch_size = x.size()[0]
NLL = -1 * log_likelihood(recon_x, x)
KL_zreal = -0.5 * (1. + logvar - mu**2 - logvar.exp())
KL_beta = kl_divergence(a, b, prior_alpha=args.alpha0, log_beta_prior=np.log(1./args.alpha0), args=args).repeat(batch_size, 1) * (1. / dataset_size)
# in test mode, our samples are essentially coming from a Bernoulli
if not test:
KL_discrete = kl_discrete(logit_post, logit(log_prior.exp()), logsample, args.temp, args.temp_prior)
else:
pi_prior = torch.exp(log_prior)
pi_posterior = torch.sigmoid(logit_post)
kl_1 = z_discrete * (pi_posterior + SMALL).log() + (1 - z_discrete) * (1 - pi_posterior + SMALL).log()
kl_2 = z_discrete * (pi_prior + SMALL).log() + (1 - z_discrete) * (1 - pi_prior + SMALL).log()
KL_discrete = kl_1 - kl_2
return NLL, KL_zreal, KL_beta, KL_discrete
def cross_entropy(y, logits):
return -torch.sum(y * torch.log(logits + SMALL), dim=1)
def elbo(recon_x, x, log_likelihood, a, b, logsample, z_discrete, logit_post, log_prior, mu, logvar, dataset_size, args=Namespace(), test=False):
NLL, KL_zreal, KL_beta, KL_discrete = nll_and_kl(recon_x, x, log_likelihood, a, b, logsample, z_discrete, logit_post, log_prior, mu, logvar, dataset_size, args, test=test)
return NLL.sum() + args.beta*(KL_zreal.sum() + KL_beta.sum() + KL_discrete.sum()), (NLL, KL_zreal, KL_beta, KL_discrete)
def train_MNIST(train_loader, model, log_likelihood, optimizer, epoch, args=Namespace()):
model.train()
model.double()
train_loss = 0.
for batch_idx, (data, zs) in enumerate(train_loader):
data = torch.autograd.Variable(data.double())
if args.cuda:
data = data.cuda()
recon_batch, logsample, logit_post, log_prior, mu, logvar, z_discrete, z_continuous = model(data)
loss, (NLL, KL_zreal, KL_beta, KL_discrete) = elbo(recon_batch, data, log_likelihood,
F.softplus(model.beta_a) + 0.01, (F.softplus(model.beta_b) + 0.01),
logsample, z_discrete, logit_post, log_prior, mu, logvar, len(train_loader.dataset), args)
optimizer.zero_grad()
loss.backward()
train_loss += loss.data[0]
optimizer.step()
if batch_idx % args.log_interval == 0:
print_in_epoch_summary(epoch, batch_idx, len(data), len(train_loader.dataset), loss.data[0],
NLL.sum().data[0],
{'zreal': KL_zreal.sum().data[0], 'beta': KL_beta.sum().data[0],
'discrete': KL_discrete.sum().data[0]})
print_epoch_summary(epoch, train_loss / len(train_loader.dataset))
return train_loss / len(train_loader.dataset)
def test_MNIST(test_loader, model, log_likelihood, epoch, args=Namespace()):
model.eval()
model.double()
test_loss = 0
for batch_idx, (data, zs) in enumerate(test_loader):
data = torch.autograd.Variable(data.double())
if args.cuda:
data = data.cuda()
recon_batch, logsample, logit_post, log_prior, mu, logvar, z_discrete, z_continuous = model(data)
loss, (NLL, KL_zreal, KL_beta, KL_discrete) = elbo(recon_batch, data, log_likelihood,
F.softplus(model.beta_a) + 0.01, F.softplus(model.beta_b) + 0.01,
logsample, z_discrete, logit_post, log_prior, mu, logvar, len(test_loader.dataset), args, test=True)
test_loss += loss.data[0]
test_loss /= len(test_loader.dataset)
print('====> Test ELBO loss: {:.3f} '.format(test_loss))
sys.stdout.flush()
return test_loss