-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathBER_vs_EbN0.py
38 lines (31 loc) · 1.04 KB
/
BER_vs_EbN0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
from numpy import sqrt
from numpy.random import rand, randn
import matplotlib.pyplot as plt
import channel
import Coding
import BPSK, QPSK, BFSK, QFSK, MPSK
if __name__ == "__main__":
N = 1e3
EbNodB_range = range(0,50)
ber = []
for n in range(len(EbNodB_range)):
EbNodB = EbNodB_range[n]
EbNo=10.0**(EbNodB/10.0)
noise_std = 1/sqrt(2*EbNo)
msg = np.random.randint(low=0, high=2, size=int(N))
msg = Coding.encodebits(msg)
mmsg = BPSK.modulate(msg, EbNo*0.0004, 0.01, 100, 10000)
mmsg += channel.generate_noise(mmsg, noise_std, 10000)
dmsg = BPSK.demodulate(mmsg, 0.01, 100, 10000)
dsmg = Coding.decodebits(dmsg)
Pb, Pb_pr = BPSK.error_probabilities(msg, dmsg, EbNo*0.0004, noise_std)
ber.append(Pb_pr)
plt.plot(EbNodB_range, ber, "o-", label="BPSK Practical BER")
plt.xscale('linear')
plt.xlabel("SNR (dB)")
plt.ylabel("BER")
plt.yscale('log')
plt.legend()
plt.savefig("BPSK_PER.png")
plt.show()