-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathQFSK.py
80 lines (69 loc) · 2.75 KB
/
QFSK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
from math import ceil
import numpy as np
def modulate(msg, Eb, Tb, f_c1, f_s):
f_c2 = ceil(f_c1 + 1 / Tb)
f_c3 = ceil(f_c1 + 2 / Tb)
f_c4 = ceil(f_c1 + 3 / Tb)
symbols = np.array([msg[0::2], msg[1::2]])
signal = []
t = np.linspace(0.0, Tb, int(Tb * f_s))
for k in range(np.size(symbols, axis=1)):
b_0 = symbols[0, k]
b_1 = symbols[1, k]
if b_0 == 0 and b_1 == 0:
s = np.sqrt(2 * Eb / Tb) * np.cos(2 * np.pi * f_c1 * t)
elif b_0 == 1 and b_1 == 0:
s = np.sqrt(2 * Eb / Tb) * np.cos(2 * np.pi * f_c2 * t)
elif b_0 == 0 and b_1 == 1:
s = np.sqrt(2 * Eb / Tb) * np.cos(2 * np.pi * f_c3 * t)
elif b_0 == 1 and b_1 == 1:
s = np.sqrt(2 * Eb / Tb) * np.cos(2 * np.pi * f_c4 * t)
signal.extend(s)
return np.array(signal)
def demodulate(signal, Tb, f_c1, f_s):
t = np.linspace(0.0, Tb, int(Tb * f_s))
f_c2 = ceil(f_c1 + 1 / Tb)
f_c3 = ceil(f_c1 + 2 / Tb)
f_c4 = ceil(f_c1 + 3 / Tb)
Ts = int(Tb * f_s) # no of samples of carrier for 1 bit
e1 = np.cos(2 * np.pi * f_c1 * t) # cosomega1t
e2 = np.sin(2 * np.pi * f_c1 * t) # sinomega1t
e3 = np.cos(2 * np.pi * f_c2 * t) # cosomega2t
e4 = np.sin(2 * np.pi * f_c2 * t) # sinomega2t
e5 = np.cos(2 * np.pi * f_c3 * t) # cosomega1t
e6 = np.sin(2 * np.pi * f_c3 * t) # sinomega1t
e7 = np.cos(2 * np.pi * f_c4 * t) # cosomega2t
e8 = np.sin(2 * np.pi * f_c4 * t) # sinomega2t
decmsg = []
for x in range(int(len(signal) / Ts)):
samplearr = signal[x * Ts:(x + 1) * Ts]
e9 = (samplearr * e1).sum() / len(samplearr)
e10 = (samplearr * e2).sum() / len(samplearr)
e11 = (samplearr * e3).sum() / len(samplearr)
e12 = (samplearr * e4).sum() / len(samplearr)
e13 = (samplearr * e5).sum() / len(samplearr)
e14 = (samplearr * e6).sum() / len(samplearr)
e15 = (samplearr * e7).sum() / len(samplearr)
e16 = (samplearr * e8).sum() / len(samplearr)
e17 = e9 + e10
e18 = e11 + e12
e19 = e13 + e14
e20 = e15 + e16
if e17 > e18 and e17 > e19 and e17 > e20:
decmsg.append(0)
decmsg.append(0)
elif e18 > e17 and e18 > e19 and e18 > e20:
decmsg.append(1)
decmsg.append(0)
elif e19 > e18 and e19 > e17 and e19 > e20:
decmsg.append(0)
decmsg.append(1)
elif e20 > e17 and e20 > e18 and e20 > e19:
decmsg.append(1)
decmsg.append(1)
return decmsg
def error_probabilities(msg, decoded_msg, Eb, N0):
Pe = (3 / 2) * np.exp(-Eb / (N0))
Pb = 2 * Pe / 3
Pb_pr = np.count_nonzero(np.array(msg) != np.array(decoded_msg)) / len(msg)
return Pe, Pb, Pb_pr