forked from NVlabs/stylegan
-
Notifications
You must be signed in to change notification settings - Fork 165
/
Copy pathfrechet_inception_distance.py
executable file
·72 lines (61 loc) · 3.26 KB
/
frechet_inception_distance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Frechet Inception Distance (FID)."""
import os
import numpy as np
import scipy
import tensorflow as tf
import dnnlib.tflib as tflib
from metrics import metric_base
from training import misc
#----------------------------------------------------------------------------
class FID(metric_base.MetricBase):
def __init__(self, num_images, minibatch_per_gpu, **kwargs):
super().__init__(**kwargs)
self.num_images = num_images
self.minibatch_per_gpu = minibatch_per_gpu
def _evaluate(self, Gs, num_gpus):
minibatch_size = num_gpus * self.minibatch_per_gpu
inception = misc.load_pkl('https://drive.google.com/uc?id=1MzTY44rLToO5APn8TZmfR7_ENSe5aZUn') # inception_v3_features.pkl
activations = np.empty([self.num_images, inception.output_shape[1]], dtype=np.float32)
# Calculate statistics for reals.
cache_file = self._get_cache_file_for_reals(num_images=self.num_images)
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
if os.path.isfile(cache_file):
mu_real, sigma_real = misc.load_pkl(cache_file)
else:
for idx, images in enumerate(self._iterate_reals(minibatch_size=minibatch_size)):
begin = idx * minibatch_size
end = min(begin + minibatch_size, self.num_images)
activations[begin:end] = inception.run(images[:end-begin], num_gpus=num_gpus, assume_frozen=True)
if end == self.num_images:
break
mu_real = np.mean(activations, axis=0)
sigma_real = np.cov(activations, rowvar=False)
misc.save_pkl((mu_real, sigma_real), cache_file)
# Construct TensorFlow graph.
result_expr = []
for gpu_idx in range(num_gpus):
with tf.device('/gpu:%d' % gpu_idx):
Gs_clone = Gs.clone()
inception_clone = inception.clone()
latents = tf.random_normal([self.minibatch_per_gpu] + Gs_clone.input_shape[1:])
images = Gs_clone.get_output_for(latents, None, is_validation=True, randomize_noise=True)
images = tflib.convert_images_to_uint8(images)
result_expr.append(inception_clone.get_output_for(images))
# Calculate statistics for fakes.
for begin in range(0, self.num_images, minibatch_size):
end = min(begin + minibatch_size, self.num_images)
activations[begin:end] = np.concatenate(tflib.run(result_expr), axis=0)[:end-begin]
mu_fake = np.mean(activations, axis=0)
sigma_fake = np.cov(activations, rowvar=False)
# Calculate FID.
m = np.square(mu_fake - mu_real).sum()
s, _ = scipy.linalg.sqrtm(np.dot(sigma_fake, sigma_real), disp=False) # pylint: disable=no-member
dist = m + np.trace(sigma_fake + sigma_real - 2*s)
self._report_result(np.real(dist))
#----------------------------------------------------------------------------