-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel_arch.py
47 lines (35 loc) · 1.66 KB
/
model_arch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, BatchNormalization
from keras.layers import Conv2D, MaxPool2D
class CNN:
@staticmethod
def model_build(width, height, ch , Num_classes):
model = Sequential()
model.add(Conv2D(filters = 64, kernel_size = (5,5), activation ='relu',input_shape=(width, height, ch)))
model.add(BatchNormalization(axis=3))
model.add(Conv2D(filters = 64, kernel_size = (5,5), activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(BatchNormalization(axis=3))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 128, kernel_size = (5,5), activation ='relu'))
model.add(BatchNormalization(axis=3))
model.add(Conv2D(filters = 128, kernel_size = (5,5), activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(BatchNormalization(axis=3))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 256, kernel_size = (5,5), activation ='relu'))
model.add(BatchNormalization(axis=3))
model.add(Conv2D(filters = 256, kernel_size = (5,5), activation ='relu'))
model.add(MaxPool2D(pool_size=(2,2)))
model.add(BatchNormalization(axis=3))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(256, activation = "relu")) #Fully connected layer
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(60, activation = "relu")) #Fully connected layer
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(Num_classes, activation = "softmax")) #Classification layer or output layer
model.summary()
return model