Skip to content
jtkrogel edited this page Aug 29, 2017 · 28 revisions

Welcome to the miniQMC wiki!

How-To Guides

Prerequisites

  • C/C++ compilers with C++11 support
  • BLAS/LAPACK, numerical library, use platform-optimized libraries

Build miniQMC

Building miniapps at the moment requires CMake which will be replace with Makefile upon release.

cd build
cmake -DCMAKE_C_COMPILER=mpicc -DCMAKE_CXX_COMPILER=mpicxx ..
make -j 8

Mixed precision can be accessed through -DQMC_MIXED_PRECISION=1

Check builds

Executables are created in ./bin folder. There are a few of them

check_distancetables # checks distance table computation including
                     # e-e and e-I distances and displacements
check_wfc            # checks wave function components including
                     # determinant and Jastrow factors.
check_spo            # checks single particle orbitals including 3D-cubic splines.
miniqmc              # runs a fake DMC and report the time spent in each component.

It is recommended to run all the check_XXX routines. They report either "All checking pass!" or a failure message indicating where the failure is.

Run executables

all the executables can run without any arguments and input files, namely default setting. If more controls is needed, query by -h option to print out available options.

Benchmark

This is an example how miniqmc reports. The default setting is a fake DMC run mimicing the NiO 32 atom cell simulation.

================================== 
Stack timer profile
Timer                           Inclusive_time  Exclusive_time  Calls   Time_per_call
Total                              1.6640     0.0131              1       1.663990021
  Diffusion                        1.0446     0.0158            100       0.010445936
    Current Gradient               0.0054     0.0036          38400       0.000000140
      Jastrow                      0.0017     0.0017          38400       0.000000045
    Distance Tables                0.3296     0.3296          95899       0.000003437
    New Gradient                   0.6151     0.0069          38395       0.000016021
      Jastrow                      0.0973     0.0973          38395       0.000002534
      Single-Particle Orbitals     0.5110     0.5110          38395       0.000013308
    Update                         0.0785     0.0785          18999       0.000004133
    Wavefuntion GL                 0.0002     0.0002            100       0.000002389
  Pseudopotential                  0.6063     0.0098            100       0.006063325
    Distance Tables                0.2907     0.2907          74484       0.000003902
    Value                          0.3059     0.0116          74484       0.000004107
      Jastrow                      0.1221     0.1221          74484       0.000001640
      Single-Particle Orbitals     0.1722     0.1722          74484       0.000002312

Basic quantum Monte Carlo and miniQMC

The basic task of quantum Monte Carlo is to obtain the total energy of a quantum mechanical system composed of mobile electrons and immobile ions. The system miniQMC is based on is nickel oxide (NiO), in which nickel and oxygen atoms are arranged in a 3D checkerboard pattern (crystal). A fixed number of immobile atoms (e.g. 16 nickel and 16 oxygen) are set inside a box with periodic boundary conditions along with the physically relevant electrons--18 per nickel and 6 per oxygen as 10 and 2 electrons, respectively, are represented abstractly by effective force fields called "pseudopotentials".

Each electron in the system is represented explicitly as a point charge in 3-dimensional space. If there are N electrons, we can list the 3D positions as f1. The quantum mechanical wavefunction f2 describes the probability f3 of finding the electrons at any given set of positions:

f4

The QMC simulation process amounts to performing an integral over the electronic coordinates. The total energy is just the sum of the local energy of each particular set of electronic coordinates weighted by its probability of occurrence:

f5

In Monte Carlo, a sequence of electron positions (f6) are sampled randomly with probability f3 and the integral is approximated statistically by the sum

f7

The computationally costly parts of the simulation are the generation of the sample positions f8 and the evaluation of the local energy f9.

Clone this wiki locally