-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathwechat_test.py
39 lines (32 loc) · 1.19 KB
/
wechat_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 9 12:18:18 2017
@author: Quantum Liu
"""
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation
import wechat_utils #will login automaticly
#wechat_utils.sendmessage()isthe callback class
#wechat_utils.sendmessage()是keras的回调类,fit时传入callbacklist
nb_sample=64*10000
batch_size=16
dim=784
model = Sequential()
model.add(Dense(1024, input_dim=784))
model.add(Activation('relu'))
for i in range(9):
model.add(Dense(2048))
model.add(Activation('sigmoid'))
model.add(Dense(1,activation='sigmoid'))
x=np.random.rand(nb_sample,dim)
y=np.random.randint(2,size=(nb_sample,1))
train_x=x[:390*64]
train_y=y[:390*64]
val_x=x[-10*64:]
val_y=y[-10*64:]
model.compile(optimizer='RMSprop',loss='binary_crossentropy',metrics=['acc','hinge'])
#==============================================================================
# Train
#==============================================================================
model.fit(x=train_x,y=train_y,batch_size=batch_size,nb_epoch=60,validation_data=(val_x,val_y),callbacks=[wechat_utils.sendmessage(savelog=True,fexten='TEST')])