-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab3_MM1Ksim.m
116 lines (93 loc) · 3.37 KB
/
lab3_MM1Ksim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
% M/M/1/10 simulation.
clc;
clear all;
close all;
rand("seed",10);
lambda = [1 5 10];
mu = 5;
for n=1:3
threshold = lambda(n)/(lambda(n) + mu); % the threshold used to calculate probabilities
transitions = 0; % holds the transitions of the simulation in transitions steps
arrivals=zeros(1,11);
total_arrivals = 0; % to measure the total number of arrivals
current_state = 0; % holds the current state of the system
previous_mean_clients = 0; % will help in the convergence test
index = 0;
to_plot=zeros(1,1000);
% for debugging
## tracestate=zeros(1,30);
## tracearrdep=zeros(1,30);
## tracearrivals=zeros(1,30);
while transitions >= 0
%threshold = lambda(n)/(lambda(n) + current_state+1);
transitions = transitions + 1; % one more transitions step
% for debugging
## if transitions<=30
## tracestate(transitions)=current_state;
## tracearrivals(transitions)=arrivals(current_state+1);
## endif
if mod(transitions,1000) == 0 % check for convergence every 1000 transitions steps
index = index + 1;
for i=1:1:length(arrivals)
P(i) = arrivals(i)/total_arrivals; % calculate the probability of every state in the system
endfor
mean_clients = 0; % calculate the mean number of clients in the system
for i=1:1:length(arrivals)
mean_clients = mean_clients + (i-1).*P(i);
endfor
to_plot(index) = mean_clients;
if abs(mean_clients - previous_mean_clients) < 0.00001 || transitions > 1000000 % convergence test
break;
endif
previous_mean_clients = mean_clients;
endif
random_number = rand(1); % generate a random number (Uniform distribution)
if current_state == 0 || random_number < threshold % arrival
% for debugging
## if transitions<=30
## tracearrdep(transitions)=1;
## endif
total_arrivals = total_arrivals + 1;
arrivals(current_state + 1) = arrivals(current_state + 1) + 1; % increase the number of arrivals in the current state
if current_state<10
current_state = current_state + 1;
endif
else % departure
%for debugging
## if transitions<=30
## tracearrdep(transitions)=2;
## endif
if current_state != 0 % no departure from an empty system
current_state = current_state - 1;
endif
endif
endwhile
printf('For lambda=%d\n',lambda(n));
printf('Ergodic Probabilities\n');
for i=1:1:length(arrivals)
disp(P(i));
endfor
printf('\n');
printf('Average number of customers: %d\n',mean_clients);
printf('Probability of rejecting a customer: %d\n',P(11));
throughput=lambda(n)*(1-P(11));
printf('Average waiting time: %d\n\n',mean_clients/throughput);
## printf('First 30 states');
## disp(tracestate);
## printf('\n');
## printf('Arrivals at current state');
## disp(tracearrivals);
## printf('\n');
## printf('Next is arrival(1) or departure(2)')
## disp(tracearrdep);
## printf('\n');
figure(1);
plot(to_plot(1:index),"r","linewidth",1.3);
title("Average number of clients in the M/M/1/10 queue: Convergence");
xlabel("transitions in thousands");
ylabel("Average number of clients");
figure(2);
bar(0:10,P,'r',0.4);
title("Probabilities")
%pause(2);
endfor