diff --git a/test/dev/c32h_n2_small_nsec_dev/MDCINT b/test/dev/c32h_n2_small_nsec_dev/MDCINT new file mode 100644 index 00000000..46e23521 Binary files /dev/null and b/test/dev/c32h_n2_small_nsec_dev/MDCINT differ diff --git a/test/dev/c32h_n2_small_nsec_dev/MRCONEE b/test/dev/c32h_n2_small_nsec_dev/MRCONEE new file mode 100644 index 00000000..5eae091e Binary files /dev/null and b/test/dev/c32h_n2_small_nsec_dev/MRCONEE differ diff --git a/test/dev/c32h_n2_small_nsec_dev/active.inp b/test/dev/c32h_n2_small_nsec_dev/active.inp new file mode 100644 index 00000000..d15e75cb --- /dev/null +++ b/test/dev/c32h_n2_small_nsec_dev/active.inp @@ -0,0 +1,19 @@ +.ninact +8 +.nact +8 +.nsec +!44 ! nmo in MRCONEE is 8 + 8 + 44 = 60 +40 +.nelec +6 +.caspt2_ciroots +33 1 +.eshift +0.0 +.diracver +22 +.subprograms +CASCI +CASPT2 +.end diff --git a/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2.inp b/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2.inp new file mode 100644 index 00000000..cdcdb1d2 --- /dev/null +++ b/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2.inp @@ -0,0 +1,35 @@ +**DIRAC +.TITLE +N2 +.WAVE FUNCTION +.ANALYZE +.4INDEX +.PROPERTIES +**INTEGRALS +.NUCMOD +1 +*READIN +.UNCONTRACT +**HAMILTONIAN +.X2C +**WAVE FUNCTIONS +.SCF +.RELCCSD +*SCF +.MAXITR + 100 +.EVCCNV + 1.0E-10 +.ERGCNV + 1.0E-10 +**ANALYZE +.MULPOP +.PRIVEC +**PROPERTIES +.RHONUC +**GENERAL +.PCMOUT +**MOLTRA +.ACTIVE +all +*END OF diff --git a/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2.mol b/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2.mol new file mode 100644 index 00000000..7c341dd7 --- /dev/null +++ b/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2.mol @@ -0,0 +1,9 @@ +DIRAC + + +C 1 A + 7. 2 +N 0.0000000000 0.0000000000 0.0000000000 +N2 0.0000000000 0.0000000000 1.0000000000 +LARGE BASIS STO-3G +FINISH diff --git a/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2_N2.out b/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2_N2.out new file mode 100644 index 00000000..d947879d --- /dev/null +++ b/test/dev/c32h_n2_small_nsec_dev/dirac_data/N2_N2.out @@ -0,0 +1,2244 @@ + ** interface to 64-bit integer MPI enabled ** + +DIRAC serial starts by allocating 64000000 words ( 488.28 MB - 0.477 GB) of memory + out of the allowed maximum of 2147483648 words ( 16384.00 MB - 16.000 GB) + +Note: maximum allocatable memory for serial run can be set by pam --aw/--ag + + ******************************************************************************* + * * + * O U T P U T * + * from * + * * + * @@@@@ @@ @@@@@ @@@@ @@@@@ * + * @@ @@ @@ @@ @@ @@ @@ * + * @@ @@ @@ @@@@@ @@@@@@ @@ * + * @@ @@ @@ @@ @@ @@ @@ @@ * + * @@@@@ @@ @@ @@ @@ @@ @@@@@ * + * * + * * + %}ZS)S?$=$)]S?$%%>SS$%S$ZZ6cHHMHHHHHHHHMHHM&MHbHH6$L/:$)S6HMMMMMMMMMMMMMMMMMMMMMMR6M]&&$6HR$&6(i::::::|i|:::::::-:-::( + $S?$$)$?$%?))?S/]#MMMMMMMMMMMMMMMMMMMMMMMMMMHM1HRH9R&$$$|):?:/://|:/::/:/.::.:$ + SS$%%?$%((S)?Z[6MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM&HF$$&/)S?<~::!!:::::::/:-:|.S + SS%%%%S$%%%$$MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHHHHHM>?/S/:/:::`:/://:/::-::S + ?$SSSS?%SS$)MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM/4?:S:/:::/:::/:/:::.::? + S$(S?S$%(?$HMMMMMMMMMMMMMMMMM#&7RH99MMMMMMMMMMMMMMMMMMHHHd$/:::::/::::::-//.:.S + (?SS(%)S&HMMMMMMMMMMMMMMMMM#S|///???$9HHMMMMMMMMMDSZ&1S/??~:///::|/!:/-:-:.( + $S?%?:``?/*?##*)$:/> `((%://::/:::::/::/$ + S$($$)HdMMMMMMMMMMMMMMMP: . ` ` ` ` `- `Z<:>?::/:::::|:iS + c%%%&HMMMMMMMMMMMMMMMM6: `$%)>%%!:::::c + S?%/MMMMMMMMMMMMMMMMMMH- /ZSS>?:?~:;/::S + $SZ?MMMMMMMMMMMMMMMMMH?. \"&((/?//?|:::$ + $%$%&MMMMMMMMMMMMMMMMM:. ?%/S:: $%%< ,HMMMMMMMF :::?:///:|:::$ + )[$S$S($|_i:#>::*H&?/::.::/:\"://:?>>`:&HMHSMMMM$:`- MMHMMMMHHT .)i/?////::/) + $$[$$>$}:dHH&$$--?S::-:.:::--/-:``./::>%Zi?)&/?`:.` `H?$T*\" ` /%?>%:)://ii$ + $&=&/ZS}$RF<:?/-.|%r/:::/:/:`.-.-..|::S//!`\"`` >??: `SSb[Z(Z?&%:::../S$$:>:::i`.`. `-.` ` ,>%%%:>/>/!|:/Z + $$&/F&1$c$?>:>?/,>?$$ZS/::/:-: ... |S?S)S?<~:::::$ + &$&$&$k&>>|?<:?Z&S$$$/$S///||..- -.- /((S$:%<:///:/= + $&>1MHHMMMM6M9MMMM$Z$}$S%/:::.`. .:/,,,dcb>/:. ((SSSS%:)!//i|$ + MMMMMMMMMMMR&&RRRHR&&($(?:|i::- .:%&S&$[&H&`` ../>%;/?>??:<::>M + MMMMMMMMMMMMS/}S$&&H&[$SS//:::.:. . . .v?://:M + MMMMMMMMMMMM?}$/$$kMM&&$(%/?//:..`. .|//1d/`://?*/*/\"` ` .:/(SS$%(S%)):%M + MMMMMMMMMMMM(}$$>&&MMHR#$S%%:?::.:|-.`:;&&b/D/$p=qpv//b/~` :/~~%%??$=$)Z$S+;M + MMMMMMMMMMMM[|S$$Z1]MMMMD[$?$:>)/::: :/?:``???bD&{b<<-` .,:/)|SS(}Z/$$?/[&]HMMMMMMMH1[/7SS(?:/..-` ::/Sc,/_, _<$?SS%$S/&c&&$&>//$&Z$/?_.bHMMMMMMMMMMM&6HRM9H6]ZkM + MMMMMMMMMMMMMMM/ `TMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH6RH&R6&M + MMMMMMMMMMMMMMMM -|?HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMFHH6HMD&&M + MMMMMMMMMMMMMMMMk ..:~?9MMMMMMMMMMMMM#`:MMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MHkR6&FM + MMMMMMMMMMMMMMMMM/ .-!:%$ZHMMMMMMMMMR` dMMMMMMMMMMMMMMMMMMMMMMMMMMMMM9MRMHH9&M + MMMMMMMMMMMMMMMMMML,:.-|::/?&&MMMMMM` .MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHRMH&&6M + MMMMMMMMMMMMMMMMMMMc%>/:::i<:SMMMMMMHdMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHHM&969kM + MMMMMMMMMMMMMMMMMMMMSS/$$/(|HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHH&HH&M + MMMMMMMMMMMMMMMMMMMM6S/?/MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMR96H1DR1M + MMMMMMMMMMMMMMMMMMMMM&$MHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMHMH691&&M + MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&R&9ZM + MMMMMMMMMMMMMMMMMMMMMMMMMRHMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&96][6M + MMMMMMMMMMMMMMMMMMMMMMMMp?:MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM96HH1][FM + MMMMMMMMMMMMMMMMMMMMMMMM> -HMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMH&1k&$&M + ******************************************************************************* + * * + * ========================================================= * + * Program for Atomic and Molecular * + * Direct Iterative Relativistic All-electron Calculations * + * ========================================================= * + * * + * * + * Written by: * + * * + * Trond Saue Universite Toulouse III France * + * Lucas Visscher Vrije Universiteit Amsterdam Netherlands * + * Hans Joergen Aa. Jensen University of Southern Denmark Denmark * + * Radovan Bast UiT The Arctic University of Norway * + * Andre S. P. Gomes CNRS/Universite de Lille France * + * * + * with contributions from: * + * * + * Ignacio Agustin Aucar CONICET/Northeastern University Argentina * + * Vebjoern Bakken University of Oslo Norway * + * Chima Chibueze Vrije Universiteit Amsterdam Netherlands * + * Joel Creutzberg University of Southern Denmark Denmark * + * Kenneth G. Dyall Schrodinger, Inc., Portland USA * + * Sebastien Dubillard University of Strasbourg France * + * Ulf Ekstroem University of Oslo Norway * + * Ephraim Eliav University of Tel Aviv Israel * + * Thomas Enevoldsen University of Southern Denmark Denmark * + * Elke Fasshauer University of Tubingen Germany * + * Timo Fleig Universite Toulouse III France * + * Olav Fossgaard UiT The Arctic University of Norway * + * Loic Halbert Universite de Lille France * + * Erik D. Hedegaard University of Southern Denmark Denmark * + * Trygve Helgaker University of Oslo Norway * + * Benjamin Helmich-Paris Max Planck Institute f. Coal Res. Germany * + * Johan Henriksson Linkoeping University Sweden * + * Martin van Horn Universite Toulouse III France * + * Miroslav Ilias Matej Bel University Slovakia * + * Christoph R. Jacob TU Braunschweig Germany * + * Stefan Knecht GSI Darmstadt/JGU Mainz Germany * + * Stanislav Komorovsky Slovak Academy of Sciences Slovakia * + * Ossama Kullie University of Kassel Germany * + * Jon K. Laerdahl University of Oslo Norway * + * Christoffer V. Larsen University of Southern Denmark Denmark * + * Yoon Sup Lee KAIST, Daejeon South Korea * + * Nanna Holmgaard List Stockholm Inst. of Technology Sweden * + * Huliyar S. Nataraj BME/Budapest Univ. Tech. & Econ. Hungary * + * Malaya Kumar Nayak Bhabha Atomic Research Centre India * + * Patrick Norman Stockholm Inst. of Technology Sweden * + * Malgorzata Olejniczak University of Warsaw Poland * + * Jeppe Olsen Aarhus University Denmark * + * Jogvan Magnus H. Olsen University of Southern Denmark Denmark * + * Anastasios Papadopoulos Max Planck Institute f. Coal Res. Germany * + * Young Choon Park KAIST, Daejeon South Korea * + * Jesper K. Pedersen University of Southern Denmark Denmark * + * Markus Pernpointner University of Heidelberg Germany * + * Johann V. Pototschnig Technical University Graz Austria * + * Roberto Di Remigio EuroCC National Competence Centre Sweden * + * Michal Repisky UiT The Arctic University of Norway * + * Kenneth Ruud UiT The Arctic University of Norway * + * Pawel Salek Stockholm Inst. of Technology Sweden * + * Bernd Schimmelpfennig Karlsruhe Institute of Technology Germany * + * Bruno Senjean CNRS/Universite de Montpellier France * + * Avijit Shee University of Berkeley USA * + * Jetze Sikkema Vrije Universiteit Amsterdam Netherlands * + * Ayaki Sunaga Kyoto University Japan * + * Andreas J. Thorvaldsen UiT The Arctic University of Norway * + * Joern Thyssen University of Southern Denmark Denmark * + * Joost N. P. van Stralen Vrije Universiteit Amsterdam Netherlands * + * Marta L. Vidal Cardiff University UK * + * Sebastien Villaume Linkoeping University Sweden * + * Olivier Visser University of Groningen Netherlands * + * Toke Winther University of Southern Denmark Denmark * + * Shigeyoshi Yamamoto Chukyo University Japan * + * Joel Creutzberg Lund University Sweden * + * Xiang Yuan Universite de Lille France * + * * + * For more information about the DIRAC code see http://diracprogram.org * + * * + * This is an experimental code. The authors accept no responsibility * + * for the performance of the code or for the correctness of the results. * + * * + * This program is free software; you can redistribute it and/or * + * modify it under the terms of the GNU Lesser General Public * + * License version 2.1 as published by the Free Software Foundation. * + * * + * If results obtained with this code are published, an * + * appropriate citation would be: * + * * + * DIRAC, a relativistic ab initio electronic structure program, * + * Release DIRAC22 (2022), written by * + * T. Saue, L. Visscher, H. J. Aa. Jensen, R. Bast, and A. S. P. Gomes * + * with contributions from I. A. Aucar, V. Bakken, C. Chibueze, * + * J. Creutzberg, K. G. Dyall, S. Dubillard, U. Ekstroem, E. Eliav, * + * T. Enevoldsen, E. Fasshauer, T. Fleig, O. Fossgaard, L. Halbert, * + * E. D. Hedegaard, T. Helgaker, J. Henriksson, M. van Horn, M. Ilias, * + * Ch. R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J. K. Laerdahl, * + * C. V. Larsen, Y. S. Lee, N. H. List, H. S. Nataraj, M. K. Nayak, * + * P. Norman, M. Olejniczak, J. Olsen, J. M. H. Olsen, A. Papadopoulos, * + * Y. C. Park, J. K. Pedersen, M. Pernpointner, J. V. Pototschnig, * + * R. Di Remigio, M. Repisky, K. Ruud, P. Salek, B. Schimmelpfennig, * + * B. Senjean, A. Shee, J. Sikkema, A. Sunaga, A. J. Thorvaldsen, * + * J. Thyssen, J. N. P. van Stralen, M. L. Vidal, S. Villaume, * + * O. Visser, T. Winther, S. Yamamoto and X. Yuan * + * (see http://diracprogram.org). * + * * + * as well as our reference paper: J. Chem. Phys. 152 (2020) 204104. * + * * + ******************************************************************************* + + +Version information +------------------- + +Branch | +Commit hash | +Commit author | +Commit date | + + +Configuration and build information +----------------------------------- + +Who compiled | noda +Compiled on server | relqc01 +Operating system | Linux-3.10.0-957.27.2.el7.x86_64 +CMake version | 3.21.3 +CMake generator | Unix Makefiles +CMake build type | release +Configuration time | 2022-05-08 03:41:26.879826 +Python version | 3.9.2 +Fortran compiler | /home/noda/Software/DIRAC/22.0/openmpi-4.1.2-intel/bin/mpif90 +Fortran compiler version | 19.0 +Fortran compiler flags | -xHost -w -assume byterecl -g -traceback -DVAR_IFORT -qopenmp -i8 +C compiler | /home/noda/Software/DIRAC/22.0/openmpi-4.1.2-intel/bin/mpicc +C compiler version | 19.0 +C compiler flags | -xHost -g -wd981 -wd279 -wd383 -wd1572 -wd177 -qopenmp +C++ compiler | /home/noda/Software/DIRAC/22.0/openmpi-4.1.2-intel/bin/mpicxx +C++ compiler version | 19.0.5 +C++ compiler flags | -xHost -Wno-unknown-pragmas -qopenmp +Static linking | False +64-bit integers | True +MPI parallelization | True +MPI launcher | /home/noda/Software/DIRAC/22.0/openmpi-4.1.2-intel/bin/mpiexec +Math libraries | unknown +Builtin BLAS library | OFF +Builtin LAPACK library | OFF +Explicit libraries | unknown +Compile definitions | HAVE_MKL_BLAS;HAVE_MKL_LAPACK;HAVE_MPI;HAVE_OPENMP;VAR_MPI;VAR_MPI2;USE_MPI_MOD_F90;SYS_LINUX;PRG_DIRAC;INT_STAR8;INSTALL_WRKMEM=64000000;HAS_PCMSOLVER;BUILD_GEN1INT;HAS_PELIB;MOD_QCORR;HAS_STIELTJES;MOD_LAO_REARRANGED;MOD_MCSCF_spinfree;MOD_AOOSOC;MOD_ESR;MOD_KRCC;MOD_SRDFT;HAS_LAPLACE + +EXACORR dependencies +-------------------- +Exatensor source repo | unknown +Exatensor git hash | unknown +Exatensor configuration | unknown + + + LAPACK integer*4/8 selftest passed + Selftest of ISO_C_BINDING Fortran - C/C++ interoperability PASSED + + + * openMP activated, thread limit - # processes - # threads: ***** 48 1 + +Execution time and host +----------------------- + + + Date and time (Linux) : Tue Sep 13 20:30:59 2022 + Host name : relqc01 + + * Opening HDF5 checkpoint file + - DIRAC was compiled without hdf5, checkpointing is not possible + + +Contents of the input file +-------------------------- + +**DIRAC +.TITLE +N2 +.WAVE FUNCTION +.ANALYZE +.4INDEX +.PROPERTIES +**INTEGRALS +.NUCMOD +1 +*READIN +.UNCONTRACT +**HAMILTONIAN +.X2C +**WAVE FUNCTIONS +.SCF +.RELCCSD +*SCF +.MAXITR + 100 +.EVCCNV + 1.0E-10 +.ERGCNV + 1.0E-10 +**ANALYZE +.MULPOP +.PRIVEC +**PROPERTIES +.RHONUC +**GENERAL +.PCMOUT +**MOLTRA +.ACTIVE +all +*END OF + + +Contents of the molecule file +----------------------------- + +DIRAC + + +C 1 A + 7. 2 +N 0.0000000000 0.0000000000 0.0000000000 +N2 0.0000000000 0.0000000000 1.0000000000 +LARGE BASIS STO-3G +FINISH + + + ************************************************************************** + *********************************** N2 *********************************** + ************************************************************************** + + Jobs in this run: + * Wave function + * Analysis + * Properties + * Transformation to Molecular Spinor basis + + + ************************************************************************** + ************************** General DIRAC set-up ************************** + ************************************************************************** + + CODATA Recommended Values of the Fundamental Physical Constants: 2018 + Peter J. Mohr, David B. Newell and Barry N. Taylor + Reviews of Modern Physics, Vol. 93, 025010 (2021) + * The speed of light : 137.0359992 + * Running in two-component mode + * Direct evaluation of the following two-electron integrals: + - LL-integrals + * Spherical transformation embedded in MO-transformation + for large components + * Transformation to scalar RKB basis embedded in + MO-transformation for small components + * Thresholds for linear dependence: + Large components: 1.00D-06 + Small components: 1.00D-08 + * MO-coefficients written to formatted file DFPCMO + * General print level : 0 + + + ************************************************************************* + ****************** Output from HERMIT input processing ****************** + ************************************************************************* + + Default print level: 1 + Nuclear model requested in input: Point charge. + + Two-electron integrals not calculated. + + + Ordinary (field-free non-relativistic) Hamiltonian integrals not calculated. + + + + Changes of defaults for *READIN + ------------------------------- + + + Uncontracted basis forced, irrespective of basis input file. + + + + *************************************************************************** + ****************** Output from MOLECULE input processing ****************** + *************************************************************************** + + + + Title Cards + ----------- + + + + + Coordinates are entered in Angstroms and converted to atomic units. + - Conversion factor : 1 bohr = 0.52917721 A + + + + SYMADD: Detection of molecular symmetry + --------------------------------------- + + Symmetry test threshold: 5.00E-06 + + The molecule has been centered at center of mass + + Symmetry point group found: D(oo,h) + + The following symmetry elements were found: X Y Z + + + Symmetry Operations + ------------------- + + Symmetry operations: 3 + + + + SYMGRP:Point group information + ------------------------------ + +Full group is: D(oo,h) +Represented as: D2h + + * The point group was generated by: + + Reflection in the yz-plane + Reflection in the xz-plane + Reflection in the xy-plane + + * Group multiplication table + + | E C2z C2y C2x i Oxy Oxz Oyz + -----+---------------------------------------- + E | E C2z C2y C2x i Oxy Oxz Oyz + C2z | C2z E C2x C2y Oxy i Oyz Oxz + C2y | C2y C2x E C2z Oxz Oyz i Oxy + C2x | C2x C2y C2z E Oyz Oxz Oxy i + i | i Oxy Oxz Oyz E C2z C2y C2x + Oxy | Oxy i Oyz Oxz C2z E C2x C2y + Oxz | Oxz Oyz i Oxy C2y C2x E C2z + Oyz | Oyz Oxz Oxy i C2x C2y C2z E + + * Character table + + | E C2z C2y C2x i Oxy Oxz Oyz + -----+---------------------------------------- + Ag | 1 1 1 1 1 1 1 1 + B3u | 1 -1 -1 1 -1 1 1 -1 + B2u | 1 -1 1 -1 -1 1 -1 1 + B1g | 1 1 -1 -1 1 1 -1 -1 + B1u | 1 1 -1 -1 -1 -1 1 1 + B2g | 1 -1 1 -1 1 -1 1 -1 + B3g | 1 -1 -1 1 1 -1 -1 1 + Au | 1 1 1 1 -1 -1 -1 -1 + + * Direct product table + + | Ag B3u B2u B1g B1u B2g B3g Au + -----+---------------------------------------- + Ag | Ag B3u B2u B1g B1u B2g B3g Au + B3u | B3u Ag B1g B2u B2g B1u Au B3g + B2u | B2u B1g Ag B3u B3g Au B1u B2g + B1g | B1g B2u B3u Ag Au B3g B2g B1u + B1u | B1u B2g B3g Au Ag B3u B2u B1g + B2g | B2g B1u Au B3g B3u Ag B1g B2u + B3g | B3g Au B1u B2g B2u B1g Ag B3u + Au | Au B3g B2g B1u B1g B2u B3u Ag + + + ************************** + *** Output from DBLGRP *** + ************************** + + * Two fermion irreps: E1g E1u + * Real group. NZ = 1 + * Direct product decomposition: + E1g x E1g : Ag + B1g + B2g + B3g + E1u x E1g : Au + B1u + B2u + B3u + E1u x E1u : Ag + B1g + B2g + B3g + + + Spinor structure + ---------------- + + + * Fermion irrep no.: 1 * Fermion irrep no.: 2 + + La | Ag (1) B1g(2) | La | Au (1) B1u(2) | + Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | + Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | + Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | + + + Quaternion symmetries + --------------------- + + Rep T(+) + ----------------------------- + Ag 1 + B3u k + B2u j + B1g i + B1u i + B2g j + B3g k + Au 1 + + Nuclear repulsion energy : 25.929683334247 Hartree + + Nuclear contribution to electric dipole moment : 0.000000000000 0.000000000000 0.000000000000 a.u.; origin (0,0,0) + + + Atoms and basis sets + -------------------- + + Number of atom types : 1 + Total number of atoms: 2 + + label atoms charge prim cont basis + ---------------------------------------------------------------------- + N2 2 7 15 15 L - [6s3p|6s3p] + ---------------------------------------------------------------------- + 30 30 L - large components + ---------------------------------------------------------------------- + total: 2 14 30 30 + + Threshold for integrals (to be written to file): 1.00D-15 + + + References for the basis sets + ----------------------------- + + Atom type 1 + Elements Contraction References + H - He: (3s) -> [1s] W.J. Hehre, R.F. Stewart and J.A. Pople, + Li - Ne: (6s,3p) -> [2s,1p] J. Chem. Phys. 2657 (1969). + Na - Ar: (9s,6p) -> [3s,2p] W.J. Hehre, R. Ditchfield, R.F. Stewart, + J.A. Pople, J. Chem. Phys. 2769 (1970). + K,Ca - : (12s,9p) -> [4s,3p] W.J. Pietro, B.A. Levy, W.J. Hehre and R.F. + Ga - Kr Stewart, Inorg. Chem. 19, 2225 (1980). + Sc - Zn: (12s,9p,3d) -> [4s,3p,1d] W.J. Pietro and W.J. Hehre, J. Comp. Chem. + Y - Cd: (15s,12p,6d) -> [5s,4p,2d] 4, 241 (1983). + *********************************************************************** + + + Cartesian Coordinates (bohr) + ---------------------------- + + Total number of coordinates: 6 + + + 1 N2 1 x 0.0000000000 + 2 y 0.0000000000 + 3 z 0.9448630623 + + 4 N2 2 x 0.0000000000 + 5 y 0.0000000000 + 6 z -0.9448630623 + + + + Cartesian coordinates in XYZ format (Angstrom) + ---------------------------------------------- + + 2 + +N2 0.0000000000 0.0000000000 0.5000000000 +N2 0.0000000000 0.0000000000 -0.5000000000 + + + Symmetry Coordinates + -------------------- + + Number of coordinates in each symmetry: 1 1 1 0 1 1 1 0 + + + Symmetry Ag ( 1) + + 1 N2 z [ 3 - 6 ]/2 + + + Symmetry B3u( 2) + + 2 N2 x [ 1 + 4 ]/2 + + + Symmetry B2u( 3) + + 3 N2 y [ 2 + 5 ]/2 + + + Symmetry B1u( 5) + + 4 N2 z [ 3 + 6 ]/2 + + + Symmetry B2g( 6) + + 5 N2 x [ 1 - 4 ]/2 + + + Symmetry B3g( 7) + + 6 N2 y [ 2 - 5 ]/2 + + + Interatomic separations (in Angstroms): + --------------------------------------- + + N2 1 N2 2 + + N2 1 0.000000 + N2 2 1.000000 0.000000 + + + + + Bond distances (angstroms): + --------------------------- + + atom 1 atom 2 distance + ------ ------ -------- + bond distance: N2 2 N2 1 1.000000 + + + + Nuclear repulsion energy : 25.929683334247 Hartree + Nuclear contribution to electric dipole moment : 0.00000000 0.00000000 0.00000000 a.u. + + * Total mass: 28.006148 amu + * Natural abundance: 99.261 % + + +* Center-of-mass coordinates (a.u.): 0.000000000000000 0.000000000000000 0.000000000000000 +* Center-of-mass coordinates (A) : 0.000000000000000 0.000000000000000 0.000000000000000 + + + GETLAB: AO-labels + ----------------- + + * Large components: 8 + 1 L N2 1 s 2 L N2 2 s 3 L N2 1 px 4 L N2 1 py 5 L N2 1 pz 6 L N2 2 px + 7 L N2 2 py 8 L N2 2 pz + * Small components: 0 + + + + GETLAB: SO-labels + ----------------- + + * Large components: 8 + 1 L Ag N2 s 2 L Ag N2 pz 3 L B3uN2 px 4 L B2uN2 py 5 L B1uN2 s 6 L B1uN2 pz + 7 L B2gN2 px 8 L B3gN2 py + * Small components: 0 + + + + Symmetry Orbitals + ----------------- + + Number of orbitals in each symmetry: 9 3 3 0 9 3 3 0 + Number of large orbitals in each symmetry: 9 3 3 0 9 3 3 0 + Number of small orbitals in each symmetry: 0 0 0 0 0 0 0 0 + +* Large component functions + + Symmetry Ag ( 1) + + 6 functions: N2 s 1+2 + 3 functions: N2 pz 1-2 + + Symmetry B3u( 2) + + 3 functions: N2 px 1+2 + + Symmetry B2u( 3) + + 3 functions: N2 py 1+2 + + Symmetry B1u( 5) + + 6 functions: N2 s 1-2 + 3 functions: N2 pz 1+2 + + Symmetry B2g( 6) + + 3 functions: N2 px 1-2 + + Symmetry B3g( 7) + + 3 functions: N2 py 1-2 + + + *************************************************************************** + *************************** Hamiltonian defined *************************** + *************************************************************************** + + + One-electron operator origins: + - General operator origin (a.u.) : 0.000000000000000 0.000000000000000 0.000000000000000 + - Magnetic gauge origin (a.u.) : 0.000000000000000 0.000000000000000 0.000000000000000 + - Dipole (and multipole) origin (a.u.) : 0.000000000000000 0.000000000000000 0.000000000000000 + - BSS with properties ! + * Print level: 0 + * Exact-Two-Component (X2C) Hamiltonian + Reference: + M. Ilias and T. Saue: + "Implementation of an infinite-order two-component relativistic Hamiltonian + by a simple one-step transformation." + J. Chem. Phys., 126 (2007) 064102. + additional reference for the new X2C module: + S. Knecht and T. Saue: + manuscript in preparation, Strasbourg 2010. + + * Running in two-component mode + * Default integral flags passed to all modules + - LL-integrals: 1 + - LS-integrals: 0 + - SS-integrals: 0 + - GT-integrals: 0 +=========================================================================== + Set-up for AMFI/RELSCF calculations +=========================================================================== + ...no reading under "*AMFI ", thus default settings + * AMFI code print level: 0 + * RELSCF code print level: 0 + * RELSCF maximum number of iterations: 50 + * All AMFI mean-field summations are on neutral individual atoms. + * order of AMFI contributions to the X2C Hamiltonian: 2 + --> adding spin-same orbit MFSSO2 terms. + + + ************************************************************************** + ************************** Wave function module ************************** + ************************************************************************** + + Wave function types requested (in input order): + HF + RELCCSD + + Wave function jobs in execution order (expanded): + * Hartree-Fock calculation + * Run RELCCSD code + + * Initial Automatic occupation based on: + Total charge of atoms = 14 + Charge of molecule = 0 + i.e. no. of electrons = 14 +=========================================================================== + *SCF: Set-up for Hartree-Fock calculation: +=========================================================================== + * Number of fermion irreps: 2 + * Sum of atomic potentials used for start guess + * General print level : 0 + + ***** INITIAL TRIAL SCF FUNCTION ***** + * Trial vectors read from file DFCOEF + * Scaling of active-active block correction to open shell Fock operator 0.500000 + to improve convergence (default value). + + ***** SCF CONVERGENCE CRITERIA ***** + * Convergence on total energy. + Desired convergence:1.000D-10 + Allowed convergence:1.000D-10 + + ***** CONVERGENCE CONTROL ***** + * Fock matrix constructed using differential density matrix + with optimal parameter. + * DIIS (in MO basis) + * DIIS will be activated when convergence reaches : 1.00D+20 + - Maximum size of B-matrix: 10 + * Damping of Fock matrix when DIIS is not activated. + Weight of old matrix : 0.250 + * Maximum number of SCF iterations : 100 + * No quadratic convergent Hartree-Fock + * DHF occupation is allowed to change during SCF cycles. + * Contributions from 2-electron integrals to Fock matrix: + LL-integrals. + ---> this is default setting from Hamiltonian input + * NB!!! No e-p rotations in 2nd order optimization. + ***** OUTPUT CONTROL ***** + * Only electron eigenvalues written out. +=========================================================================== + **RELCC: Set-up for Coupled Cluster calculations +=========================================================================== + + + *************************************************************************** + ***************************** Analysis module ***************************** + *************************************************************************** + + Jobs in this run: + * Write vectors + * Mulliken population analysis +=========================================================================== + POPINP: Mulliken population analysis +=========================================================================== + * Gross populations + * Label definitions based on SO-labels + * Number of spinors analyzed: + - All occupied orbitals in fermion ircop E1g + - All occupied orbitals in fermion ircop E1u + * Print level: 0 +=========================================================================== + VECINP: Vector print +=========================================================================== + * Coefficients written in SO-basis + * Vector print: + - No orbital string specified in fermion ircop E1g + - No orbital string specified in fermion ircop E1u + * Only large component coefficients written out. + + + *************************************************************************** + ***************************** Property module ***************************** + *************************************************************************** + + * Print level: 0 + * Input label: **PROPE + * Properties calculated for the following wave functions: + 1: DHF + These initial settings of center and origins might be changed later: + * Operator center (a.u.): 0.0000000000 0.0000000000 0.0000000000 + * Gauge origin (a.u.): 0.0000000000 0.0000000000 0.0000000000 + * Dipole origin (a.u.): 0.0000000000 0.0000000000 0.0000000000 + * Perform 4c->2c picture change transformation of the four-component property operators +=========================================================================== + Electronic density at nuclei +=========================================================================== +=========================================================================== + TRPINP: Property integral transformation +=========================================================================== + * Print level: 0 + *The following operators will be transformed: + 1 XDIPLEN B3u T+ +........................................................................... + Operator type DIAGONAL : scalar operator + Labels and factors : XDIPLEN +00+ 1.0000000000000 (real) +........................................................................... + 2 YDIPLEN B2u T+ +........................................................................... + Operator type DIAGONAL : scalar operator + Labels and factors : YDIPLEN +00+ 1.0000000000000 (real) +........................................................................... + 3 ZDIPLEN B1u T+ +........................................................................... + Operator type DIAGONAL : scalar operator + Labels and factors : ZDIPLEN +00+ 1.0000000000000 (real) +........................................................................... +--------------------------------------------------------------------------- + + + +=========================================================================== + TRAINP: Set-up for index transformation +=========================================================================== + + * General print level : 0 + * Electronic orbitals only. + * Total active space. + Fermion ircop:E1g + all + Fermion ircop:E1u + all + + * Set-up for 2-index transformation + * LS Integrals not included in core Fock-matrix + * SS Integrals not included in core Fock-matrix + * Active spaces: + Fermion ircop:E1g + - Index 1: all + - Index 2: all + Fermion ircop:E1u + - Index 1: all + - Index 2: all + + * Set-up for 4-index transformation + * Following scheme : 6 + - write half-transformed integrals (ij|rs) to disk + - sorting of intermediate 1HT integrals is disabled + * Screening threshold :1.00E-14 + * MO integral threshold :1.00E-14 + * LS Integrals not transformed. + * SS Integrals not transformed. + * Gaunt Integrals not transformed. + * Active spaces: + Fermion ircop:E1g + - Index 1: all + - Index 2: all + - Index 3: all + - Index 4: all + Fermion ircop:E1u + - Index 1: all + - Index 2: all + - Index 3: all + - Index 4: all + + + ******************************************************************************** + *************************** Input consistency checks *************************** + ******************************************************************************** + + + + ************************************************************************* + ************************ End of input processing ************************ + ************************************************************************* + + + + *************************************************************************** + ****************** Output from MOLECULE input processing ****************** + *************************************************************************** + + + + Title Cards + ----------- + + + + + Coordinates are entered in Angstroms and converted to atomic units. + - Conversion factor : 1 bohr = 0.52917721 A + + + + SYMADD: Detection of molecular symmetry + --------------------------------------- + + Symmetry test threshold: 5.00E-06 + + The molecule has been centered at center of mass + + Symmetry point group found: D(oo,h) + + The following symmetry elements were found: X Y Z + + + Symmetry Operations + ------------------- + + Symmetry operations: 3 + + + + SYMGRP:Point group information + ------------------------------ + +Full group is: D(oo,h) +Represented as: D2h + + * The point group was generated by: + + Reflection in the yz-plane + Reflection in the xz-plane + Reflection in the xy-plane + + * Group multiplication table + + | E C2z C2y C2x i Oxy Oxz Oyz + -----+---------------------------------------- + E | E C2z C2y C2x i Oxy Oxz Oyz + C2z | C2z E C2x C2y Oxy i Oyz Oxz + C2y | C2y C2x E C2z Oxz Oyz i Oxy + C2x | C2x C2y C2z E Oyz Oxz Oxy i + i | i Oxy Oxz Oyz E C2z C2y C2x + Oxy | Oxy i Oyz Oxz C2z E C2x C2y + Oxz | Oxz Oyz i Oxy C2y C2x E C2z + Oyz | Oyz Oxz Oxy i C2x C2y C2z E + + * Character table + + | E C2z C2y C2x i Oxy Oxz Oyz + -----+---------------------------------------- + Ag | 1 1 1 1 1 1 1 1 + B3u | 1 -1 -1 1 -1 1 1 -1 + B2u | 1 -1 1 -1 -1 1 -1 1 + B1g | 1 1 -1 -1 1 1 -1 -1 + B1u | 1 1 -1 -1 -1 -1 1 1 + B2g | 1 -1 1 -1 1 -1 1 -1 + B3g | 1 -1 -1 1 1 -1 -1 1 + Au | 1 1 1 1 -1 -1 -1 -1 + + * Direct product table + + | Ag B3u B2u B1g B1u B2g B3g Au + -----+---------------------------------------- + Ag | Ag B3u B2u B1g B1u B2g B3g Au + B3u | B3u Ag B1g B2u B2g B1u Au B3g + B2u | B2u B1g Ag B3u B3g Au B1u B2g + B1g | B1g B2u B3u Ag Au B3g B2g B1u + B1u | B1u B2g B3g Au Ag B3u B2u B1g + B2g | B2g B1u Au B3g B3u Ag B1g B2u + B3g | B3g Au B1u B2g B2u B1g Ag B3u + Au | Au B3g B2g B1u B1g B2u B3u Ag + + + ************************** + *** Output from DBLGRP *** + ************************** + + * Two fermion irreps: E1g E1u + * Real group. NZ = 1 + * Direct product decomposition: + E1g x E1g : Ag + B1g + B2g + B3g + E1u x E1g : Au + B1u + B2u + B3u + E1u x E1u : Ag + B1g + B2g + B3g + + + Spinor structure + ---------------- + + + * Fermion irrep no.: 1 * Fermion irrep no.: 2 + + La | Ag (1) B1g(2) | La | Au (1) B1u(2) | + Sa | Au (1) B1u(2) | Sa | Ag (1) B1g(2) | + Lb | B2g(3) B3g(4) | Lb | B2u(3) B3u(4) | + Sb | B2u(3) B3u(4) | Sb | B2g(3) B3g(4) | + + + Quaternion symmetries + --------------------- + + Rep T(+) + ----------------------------- + Ag 1 + B3u k + B2u j + B1g i + B1u i + B2g j + B3g k + Au 1 + + Nuclear repulsion energy : 25.929683334247 Hartree + + Nuclear contribution to electric dipole moment : 0.000000000000 0.000000000000 0.000000000000 a.u.; origin (0,0,0) + + + Atoms and basis sets + -------------------- + + Number of atom types : 1 + Total number of atoms: 2 + + label atoms charge prim cont basis + ---------------------------------------------------------------------- + N2 2 7 15 15 L - [6s3p|6s3p] + ---------------------------------------------------------------------- + 30 30 L - large components + 78 78 S - small components + ---------------------------------------------------------------------- + total: 2 14 108 108 + + Cartesian basis used. + Threshold for integrals (to be written to file): 1.00D-15 + + + References for the basis sets + ----------------------------- + + Atom type 1 + Elements Contraction References + H - He: (3s) -> [1s] W.J. Hehre, R.F. Stewart and J.A. Pople, + Li - Ne: (6s,3p) -> [2s,1p] J. Chem. Phys. 2657 (1969). + Na - Ar: (9s,6p) -> [3s,2p] W.J. Hehre, R. Ditchfield, R.F. Stewart, + J.A. Pople, J. Chem. Phys. 2769 (1970). + K,Ca - : (12s,9p) -> [4s,3p] W.J. Pietro, B.A. Levy, W.J. Hehre and R.F. + Ga - Kr Stewart, Inorg. Chem. 19, 2225 (1980). + Sc - Zn: (12s,9p,3d) -> [4s,3p,1d] W.J. Pietro and W.J. Hehre, J. Comp. Chem. + Y - Cd: (15s,12p,6d) -> [5s,4p,2d] 4, 241 (1983). + *********************************************************************** + + + Cartesian Coordinates (bohr) + ---------------------------- + + Total number of coordinates: 6 + + + 1 N2 1 x 0.0000000000 + 2 y 0.0000000000 + 3 z 0.9448630623 + + 4 N2 2 x 0.0000000000 + 5 y 0.0000000000 + 6 z -0.9448630623 + + + + Cartesian coordinates in XYZ format (Angstrom) + ---------------------------------------------- + + 2 + +N2 0.0000000000 0.0000000000 0.5000000000 +N2 0.0000000000 0.0000000000 -0.5000000000 + + + Symmetry Coordinates + -------------------- + + Number of coordinates in each symmetry: 1 1 1 0 1 1 1 0 + + + Symmetry Ag ( 1) + + 1 N2 z [ 3 - 6 ]/2 + + + Symmetry B3u( 2) + + 2 N2 x [ 1 + 4 ]/2 + + + Symmetry B2u( 3) + + 3 N2 y [ 2 + 5 ]/2 + + + Symmetry B1u( 5) + + 4 N2 z [ 3 + 6 ]/2 + + + Symmetry B2g( 6) + + 5 N2 x [ 1 - 4 ]/2 + + + Symmetry B3g( 7) + + 6 N2 y [ 2 - 5 ]/2 + + + Interatomic separations (in Angstroms): + --------------------------------------- + + N2 1 N2 2 + + N2 1 0.000000 + N2 2 1.000000 0.000000 + + + + + Bond distances (angstroms): + --------------------------- + + atom 1 atom 2 distance + ------ ------ -------- + bond distance: N2 2 N2 1 1.000000 + + + + Nuclear repulsion energy : 25.929683334247 Hartree + Nuclear contribution to electric dipole moment : 0.00000000 0.00000000 0.00000000 a.u. + + * Total mass: 28.006148 amu + * Natural abundance: 99.261 % + + +* Center-of-mass coordinates (a.u.): 0.000000000000000 0.000000000000000 0.000000000000000 +* Center-of-mass coordinates (A) : 0.000000000000000 0.000000000000000 0.000000000000000 + + + Nuclear contribution to dipole moments + -------------------------------------- + + All dipole components are zero by symmetry + +Total time used in ONEGEN (CPU) 0.00906600s and (WALL) 0.00954914s + + + Generating Lowdin canonical matrix: + ----------------------------------- + + L Ag * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.38E-02 + L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.27E+00 + L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.27E+00 + S B3u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.12E-01 + S B2u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.12E-01 + S B1u * Deleted: 3(Proj: 3, Lindep: 0) Smin: 0.83E-02 + S Au * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.38E+00 + L B3u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.49E+00 + L B2u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.49E+00 + L B1u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.33E-02 + S Ag * Deleted: 3(Proj: 3, Lindep: 0) Smin: 0.98E-02 + S B1g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.76E+00 + S B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.11E-01 + S B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.11E-01 + + ********************************************************************* + *** Entering the Exact-Two-Component (X2C) interface in DIRAC *** + *** *** + *** library version: 1.2 (August 2013) *** + *** *** + *** authors: - Stefan Knecht *** + *** - Trond Saue *** + *** contributors: - Hans Joergen Aagaard Jensen *** + *** - Michal Repisky *** + *** - Miroslav Ilias *** + *** features: - X2C *** + *** - X2C-atomic/fragment (X2C-LU) *** + *** - X2C-spinfree *** + *** - X2C-molecular-mean-field (X2Cmmf) *** + *** *** + *** Universities of *** + *** Zuerich, Toulouse, Odense, Banska Bystrica and Tromsoe *** + *** *** + *** contact: stefan.knecht@phys.chem.ethz.ch *** + ********************************************************************* + + + *** chosen path in X2C module: molecular X2C (with spin-orbit contributions) + + + Output from MODHAM + ------------------ + + * Applied strict kinetic balance ! + * Applied SL-regrouping on AO2MO tranf.matrix in SLSORT. + + + Output from AMFIIN + ------------------ + + + *** number of unique nuclei (from file MNF.INP): 1 + + *** calculate AMFI for atom type 1 with atomic charge 7 + *** number of nuclei with identical atom type: 2 + unique nuclei index: 1 + *** file with AMFI integrals for this center: AOPROPER_MNF.7.1 + + + ATOMIC NO-PAIR SO-MF CODE starts + -------------------------------- + + Douglas-Kroll type operators + charge on the calculated atom: 0 + Mean-field summation for electrons #: 7 + ...electronic occupation of N: [He]2s^2 2p^3 + **** Written to the file TOSCF for "relscf" **** + charge: 7.000 + nprimit: 6 3 0 0 + closed sh.: 2 0 0 0 + open sh.: 0 3 0 0 + + + *** PROGRAM AT34 - ALLIANT - @V *** + ----------------------------------- + + + SYMMETRY SPECIES S P D F + NUMBER OF BASIS FUNCTIONS: 6 3 + NUMBER OF CLOSED SHELLS : 2 0 + OPEN SHELL OCCUPATION : 0 3 + ### SCF ITERATIONS ### + ### NON-RELATIVISTIC APPROX. ### + 1. iteration, total energy: 0.000000000000 + 2. iteration, total energy: -53.548451424857 + 3. iteration, total energy: -53.791155464594 + 4. iteration, total energy: -53.802664264963 + 5. iteration, total energy: -53.803208786848 + 6. iteration, total energy: -53.803559989285 + 7. iteration, total energy: -53.803588799104 + 8. iteration, total energy: -53.803591190020 + 9. iteration, total energy: -53.803591315598 + 10. iteration, total energy: -53.803591399345 + 11. iteration, total energy: -53.803591406205 + 12. iteration, total energy: -53.803591406775 + 13. iteration, total energy: -53.803591405547 + 14. iteration, total energy: -53.803591406825 + 14. iteration, total energy: -53.803591406827 + ### NON-RELATIVISTIC APPROX. ### + 14 -0.5380359141D+02 -0.1062284820D+03 0.5242489060D+02 -0.2026298592D+01 + ### SCF ITERATIONS ### + ### EV APPROX. ### + 1. iteration, total energy: -53.824824002054 + 2. iteration, total energy: -53.824992121492 + 3. iteration, total energy: -53.824992300792 + 4. iteration, total energy: -53.824992307573 + 5. iteration, total energy: -53.824992306652 + 6. iteration, total energy: -53.824992308128 + 7. iteration, total energy: -53.824992308146 + 8. iteration, total energy: -53.824992308147 + 8. iteration, total energy: -53.824992308147 + ### EV OPERATOR RESULT ### + 8 -0.5382499231D+02 -0.1063012156D+03 0.5247622334D+02 -0.2025702478D+01 + *** AMFIIN: ADDING nucleus 1 with charge 7 to the BSSn Hamiltonian. + *** AMFIIN: ADDING nucleus 2 with charge 7 to the BSSn Hamiltonian. + + ********************************************************************* + *** X2C transformation ended properly. *** + *** Calculation continues in two-component mode. *** + ********************************************************************* + + + Coordinates are entered in Angstroms and converted to atomic units. + - Conversion factor : 1 bohr = 0.52917721 A + + + + SYMADD: Detection of molecular symmetry + --------------------------------------- + + Symmetry test threshold: 5.00E-06 + + The molecule has been centered at center of mass + + Symmetry point group found: D(oo,h) + + The following symmetry elements were found: X Y Z + + + Nuclear contribution to dipole moments + -------------------------------------- + + All dipole components are zero by symmetry + +Total time used in ONEGEN (CPU) 0.00187500s and (WALL) 0.00228596s + + + Generating Lowdin canonical matrix: + ----------------------------------- + + L Ag * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.38E-02 + L B2g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.27E+00 + L B3g * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.27E+00 + L B3u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.49E+00 + L B2u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.49E+00 + L B1u * Deleted: 0(Proj: 0, Lindep: 0) Smin: 0.33E-02 + + + Output from LINSYM + ------------------ + + + Parity MJ Functions(total) Functions(LC) Functions(SC) + 1 1/2 12 12 0 + 1 -3/2 3 3 0 + -1 1/2 12 12 0 + -1 -3/2 3 3 0 + + + ********************************************************************** + ************************* Orbital dimensions ************************* + ********************************************************************** + + Irrep 1 Irrep 2 Sum +No. of electronic orbitals (NESH): 15 15 30 +No. of positronic orbitals (NPSH): 0 0 0 +Total no. of orbitals (NORB): 15 15 30 + >>> CPU time used in PAMSET is 0.11 seconds + >>> WALL time used in PAMSET is 0.12 seconds + + + ******************************************************************************* + *********************** X2C relativistic HF calculation *********************** + ******************************************************************************* + + +*** INFO *** No trial vectors found. + Using sum of fitted atomic potentials as start potential. + + Reference: S. Lehtola, L. Visscher, E. Engel, J. Chem. Phys. 152 (2020) 144105. (small GRASP fit) + + +########## START ITERATION NO. 1 ########## Tue Sep 13 20:30:59 2022 + + +* AUTOCC( 0) : Initial occupation: + + * Closed shell SCF calculation with 14 electrons in + 3 orbitals in Fermion irrep 1 and 4 orbitals in Fermion irrep 2 +E_HOMO...E_LUMO, symmetry 1: 3 -0.55882 4 -0.19897 +E_HOMO...E_LUMO, symmetry 2: 19 -0.63817 20 0.43596 + +=> Calculating sum of orbital energies +It. 1 -39.44752440752 0.00D+00 0.00D+00 0.00D+00 0.00370600s Atom. scrpot Tue Sep 13 + +########## START ITERATION NO. 2 ########## Tue Sep 13 20:30:59 2022 + + +* GETGAB: label "GABAO1XX" not found; calling GABGEN. +SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time +SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00175899s +E_HOMO...E_LUMO, symmetry 1: 3 -0.47837 4 0.36129 +E_HOMO...E_LUMO, symmetry 2: 19 -0.51472 20 0.88900 +>>> Total wall time: 0.01672506s, and total CPU time : 0.00938300s + +########## END ITERATION NO. 2 ########## Tue Sep 13 20:30:59 2022 + +It. 2 -107.5940669415 6.81D+01 -1.60D+00 1.26D+00 0.01672506s LL Tue Sep 13 + +########## START ITERATION NO. 3 ########## Tue Sep 13 20:30:59 2022 + + 3 *** Differential density matrix. DCOVLP = 0.9441 +SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time +SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00171699s +E_HOMO...E_LUMO, symmetry 1: 3 -0.60643 4 0.25707 +E_HOMO...E_LUMO, symmetry 2: 19 -0.64243 20 0.83811 +>>> Total wall time: 0.01228595s, and total CPU time : 0.00584400s + +########## END ITERATION NO. 3 ########## Tue Sep 13 20:30:59 2022 + +It. 3 -107.7193954912 1.25D-01 -3.85D-01 1.71D-01 DIIS 2 0.01228595s LL Tue Sep 13 + +########## START ITERATION NO. 4 ########## Tue Sep 13 20:30:59 2022 + + 4 *** Differential density matrix. DCOVLP = 0.9873 +SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time +SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00171700s +E_HOMO...E_LUMO, symmetry 1: 3 -0.59748 4 0.26636 +E_HOMO...E_LUMO, symmetry 2: 19 -0.63263 20 0.84385 +>>> Total wall time: 0.01217103s, and total CPU time : 0.00567100s + +########## END ITERATION NO. 4 ########## Tue Sep 13 20:30:59 2022 + +It. 4 -107.7231068204 3.71D-03 6.49D-02 1.68D-02 DIIS 3 0.01217103s LL Tue Sep 13 + +########## START ITERATION NO. 5 ########## Tue Sep 13 20:30:59 2022 + + 5 *** Differential density matrix. DCOVLP = 0.9974 +SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time +SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00169200s +E_HOMO...E_LUMO, symmetry 1: 3 -0.59798 4 0.26628 +E_HOMO...E_LUMO, symmetry 2: 19 -0.63277 20 0.84396 +>>> Total wall time: 0.01199603s, and total CPU time : 0.00557500s + +########## END ITERATION NO. 5 ########## Tue Sep 13 20:30:59 2022 + +It. 5 -107.7231546332 4.78D-05 -5.79D-03 1.84D-03 DIIS 4 0.01199603s LL Tue Sep 13 + +########## START ITERATION NO. 6 ########## Tue Sep 13 20:30:59 2022 + + 6 *** Differential density matrix. DCOVLP = 0.9993 +SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time +SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00148800s +E_HOMO...E_LUMO, symmetry 1: 3 -0.59798 4 0.26631 +E_HOMO...E_LUMO, symmetry 2: 19 -0.63274 20 0.84397 +>>> Total wall time: 0.01215315s, and total CPU time : 0.00555100s + +########## END ITERATION NO. 6 ########## Tue Sep 13 20:30:59 2022 + +It. 6 -107.7231555376 9.04D-07 1.48D-04 1.33D-04 DIIS 5 0.01215315s LL Tue Sep 13 + +########## START ITERATION NO. 7 ########## Tue Sep 13 20:30:59 2022 + + 7 *** Differential density matrix. DCOVLP = 1.0000 +SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time +SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00171100s +E_HOMO...E_LUMO, symmetry 1: 3 -0.59798 4 0.26631 +E_HOMO...E_LUMO, symmetry 2: 19 -0.63274 20 0.84397 +>>> Total wall time: 0.01190901s, and total CPU time : 0.00549800s + +########## END ITERATION NO. 7 ########## Tue Sep 13 20:30:59 2022 + +It. 7 -107.7231555434 5.77D-09 -1.48D-05 1.61D-05 DIIS 6 0.01190901s LL Tue Sep 13 + +########## START ITERATION NO. 8 ########## Tue Sep 13 20:30:59 2022 + + 8 *** Differential density matrix. DCOVLP = 1.0000 +SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time +SOfock:LL 1.00D-12 0.00% 0.00% 0.00% 0.00% 0.00169700s +E_HOMO...E_LUMO, symmetry 1: 3 -0.59798 4 0.26631 +E_HOMO...E_LUMO, symmetry 2: 19 -0.63274 20 0.84397 +>>> Total wall time: 0.01198483s, and total CPU time : 0.00549100s + +########## END ITERATION NO. 8 ########## Tue Sep 13 20:30:59 2022 + +It. 8 -107.7231555435 1.02D-10 1.61D-06 8.92D-07 DIIS 7 0.01198483s LL Tue Sep 13 + +########## START ITERATION NO. 9 ########## Tue Sep 13 20:30:59 2022 + + 9 *** Differential density matrix. DCOVLP = 1.0000 +SCR scr.thr. Step1 Step2 Coulomb Exchange CPU-time +SOfock:LL 1.00D-12 0.00% 0.10% 0.00% 0.00% 0.00169802s +>>> Total wall time: 0.00935006s, and total CPU time : 0.00299300s + +########## END ITERATION NO. 9 ########## Tue Sep 13 20:30:59 2022 + +It. 9 -107.7231555435 1.71D-13 -1.02D-07 1.23D-07 DIIS 7 0.00935006s LL Tue Sep 13 + + + SCF - CYCLE + ----------- + +* Convergence on total energy. + Desired convergence :1.000D-10 + Allowed convergence:1.000D-10 + +* ERGVAL - convergence in total energy +* FCKVAL - convergence in maximum change in total Fock matrix +* EVCVAL - convergence in error vector (gradient) +-------------------------------------------------------------------------------------------------------------------------------- + Energy ERGVAL FCKVAL EVCVAL Conv.acc CPU Integrals Time stamp +-------------------------------------------------------------------------------------------------------------------------------- +It. 1 -39.44752440752 0.00D+00 0.00D+00 0.00D+00 0.00370600s Atom. scrpot Tue Sep 13 +It. 2 -107.5940669415 6.81D+01 -1.60D+00 1.26D+00 0.01672506s LL Tue Sep 13 +It. 3 -107.7193954912 1.25D-01 -3.85D-01 1.71D-01 DIIS 2 0.01228595s LL Tue Sep 13 +It. 4 -107.7231068204 3.71D-03 6.49D-02 1.68D-02 DIIS 3 0.01217103s LL Tue Sep 13 +It. 5 -107.7231546332 4.78D-05 -5.79D-03 1.84D-03 DIIS 4 0.01199603s LL Tue Sep 13 +It. 6 -107.7231555376 9.04D-07 1.48D-04 1.33D-04 DIIS 5 0.01215315s LL Tue Sep 13 +It. 7 -107.7231555434 5.77D-09 -1.48D-05 1.61D-05 DIIS 6 0.01190901s LL Tue Sep 13 +It. 8 -107.7231555435 1.02D-10 1.61D-06 8.92D-07 DIIS 7 0.01198483s LL Tue Sep 13 +It. 9 -107.7231555435 1.71D-13 -1.02D-07 1.23D-07 DIIS 7 0.00935006s LL Tue Sep 13 +-------------------------------------------------------------------------------------------------------------------------------- +* Convergence after 9 iterations. +* Average elapsed time per iteration: + No 2-ints : 0.00377917s + LL : 0.01232189s + + + TOTAL ENERGY + ------------ + + Electronic energy : -133.65283887771005 + + Other contributions to the total energy + Nuclear repulsion energy : 25.92968333424700 + + Sum of all contributions to the energy + Total energy : -107.72315554346305 + + + Eigenvalues + ----------- + + +* Block 1 in E1g: Omega = 1/2 + * Closed shell, f = 1.0000 + -15.4784350021385 ( 2) -1.5655313422295 ( 2) -0.5979846687402 ( 2) + * Virtual eigenvalues, f = 0.0000 + 0.2663058042062 ( 2) 0.9539627870752 ( 2) 1.2544304326990 ( 2) 1.3007269323932 ( 2) 6.1356231350524 ( 2) + 6.5059191776069 ( 2) 8.3761744747851 ( 2) 30.0290105950652 ( 2) 144.6162299424421 ( 2) + +* Block 2 in E1g: Omega = 3/2 + * Virtual eigenvalues, f = 0.0000 + 0.2665434262340 ( 2) 1.3011409611415 ( 2) 6.1376290496030 ( 2) + +* Block 1 in E1u: Omega = 1/2 + * Closed shell, f = 1.0000 + -15.4717131240214 ( 2) -0.7134975799060 ( 2) -0.6331055572598 ( 2) + * Virtual eigenvalues, f = 0.0000 + 0.8439713539693 ( 2) 1.0581170380742 ( 2) 1.4064444331398 ( 2) 2.0495833529237 ( 2) 5.8417355507112 ( 2) + 5.8638118031452 ( 2) 8.6715070200812 ( 2) 30.3351528572959 ( 2) 144.9053585228469 ( 2) + +* Block 2 in E1u: Omega = 3/2 + * Closed shell, f = 1.0000 + -0.6327385145180 ( 2) + * Virtual eigenvalues, f = 0.0000 + 1.0584140397995 ( 2) 5.8657954681136 ( 2) + +* Occupation in fermion symmetry E1g + * Inactive orbitals + 1/2 1/2 1/2 + * Virtual orbitals + 1/2 3/2 1/2 1/2 1/2 3/2 1/2 3/2 1/2 1/2 1/2 1/2 + +* Occupation in fermion symmetry E1u + * Inactive orbitals + 1/2 1/2 1/2 3/2 + * Virtual orbitals + 1/2 1/2 3/2 1/2 1/2 1/2 1/2 3/2 1/2 1/2 1/2 + +* Occupation of subblocks + E1g: 1/2 3/2 + closed shells (f=1.0000): 3 0 + virtual shells (f=0.0000): 9 3 +tot.num. of pos.erg shells: 12 3 + E1u: 1/2 3/2 + closed shells (f=1.0000): 3 1 + virtual shells (f=0.0000): 9 2 +tot.num. of pos.erg shells: 12 3 + + +* HOMO - LUMO gap: + + E(LUMO) : 0.26630580 au (symmetry E1g) + - E(HOMO) : -0.59798467 au (symmetry E1g) + ------------------------------------------ + gap : 0.86429047 au + + + + ************************************************************************** + ****************************** Vector print ****************************** + ************************************************************************** + + + + Coefficients from DFCOEF + ------------------------ + + + + ************************************************************************** + ********************** Mulliken population analysis ********************** + ************************************************************************** + + + + Fermion ircop E1g + ----------------- + + + + Fermion ircop E1g + ----------------- + + +* Electronic eigenvalue no. 1: -15.478435002138 (Occupation : f = 1.0000) m_j= 1/2 +============================================================================================ + +* Gross populations greater than 0.00010 + +Gross Total | L Ag N2 s +-------------------------------------- + alpha 1.0000 | 1.0001 + beta 0.0000 | 0.0000 + +* Electronic eigenvalue no. 2: -1.5655313422295 (Occupation : f = 1.0000) m_j= 1/2 +============================================================================================ + +* Gross populations greater than 0.00010 + +Gross Total | L Ag N2 s L Ag N2 pz +----------------------------------------------------- + alpha 1.0000 | 0.7330 0.2670 + beta 0.0000 | 0.0000 0.0000 + +* Electronic eigenvalue no. 3: -0.5979846687402 (Occupation : f = 1.0000) m_j= 1/2 +============================================================================================ + +* Gross populations greater than 0.00010 + +Gross Total | L Ag N2 s L Ag N2 pz +----------------------------------------------------- + alpha 1.0000 | 0.3448 0.6552 + beta 0.0000 | 0.0000 0.0000 + + +** Total gross population of fermion ircop E1g ** + +Gross Total | L Ag N2 s L Ag N2 pz +----------------------------------------------------- + total 6.00000 | 4.15570 1.84430 + + + Fermion ircop E1u + ----------------- + + + + Fermion ircop E1u + ----------------- + + +* Electronic eigenvalue no. 1: -15.471713124021 (Occupation : f = 1.0000) m_j= 1/2 +============================================================================================ + +* Gross populations greater than 0.00010 + +Gross Total | L B1uN2 s L B1uN2 pz +----------------------------------------------------- + alpha 1.0000 | 0.9986 0.0014 + beta 0.0000 | 0.0000 0.0000 + +* Electronic eigenvalue no. 2: -0.7134975799060 (Occupation : f = 1.0000) m_j= 1/2 +============================================================================================ + +* Gross populations greater than 0.00010 + +Gross Total | L B1uN2 s L B1uN2 pz +----------------------------------------------------- + alpha 1.0000 | 0.6919 0.3081 + beta 0.0000 | 0.0000 0.0000 + +* Electronic eigenvalue no. 3: -0.6331055572598 (Occupation : f = 1.0000) m_j= 1/2 +============================================================================================ + +* Gross populations greater than 0.00010 + +Gross Total | L B3uN2 px L B2uN2 py +----------------------------------------------------- + alpha 0.0000 | 0.0000 0.0000 + beta 1.0000 | 0.5000 0.5000 + +* Electronic eigenvalue no. 4: -0.6327385145180 (Occupation : f = 1.0000) m_j= -3/2 +============================================================================================ + +* Gross populations greater than 0.00010 + +Gross Total | L B3uN2 px L B2uN2 py +----------------------------------------------------- + alpha 0.0000 | 0.0000 0.0000 + beta 1.0000 | 0.5000 0.5000 + + +** Total gross population of fermion ircop E1u ** + +Gross Total | L B3uN2 px L B2uN2 py L B1uN2 s L B1uN2 pz +----------------------------------------------------------------------------------- + total 8.00000 | 2.00000 2.00000 3.38108 0.61892 + + +*** Total gross population *** + +Gross Total | L Ag N2 s L Ag N2 pz L B3uN2 px L B2uN2 py L B1uN2 s L B1uN2 pz +----------------------------------------------------------------------------------------------------------------- + total 14.00000 | 4.15570 1.84430 2.00000 2.00000 3.38108 0.61892 +=========================================================================== +* PCMOUT: Coefficients read from unformatted DFCOEF + and written to formatted DFPCMO +=========================================================================== + + + ************************************************************************** + **************** Transformation to Molecular Spinor Basis **************** + ************************************************************************** + + + Written by Luuk Visscher, Jon Laerdahl & Trond Saue + Odense, 1997 + + + + + ************************************************************************ + **************** Transformation of 2-electron integrals **************** + ************************************************************************ + + + Transformation started at : Tue Sep 13 20:30:59 2022 + +* REACMO: Coefficients read from file DFCOEF - Total energy: -107.723155543462880 +* Heading :N2 Tue Sep 13 20:30:59 2022 + +* Orbital ranges for 4-index transformation: + + + * Fermion ircop E1g + + Index 1 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + Index 2 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + Index 3 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + Index 4 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + + * Fermion ircop E1u + + Index 1 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + Index 2 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + Index 3 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + Index 4 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + (PAMTRA) Orbitals read from DFCOEF + +* Core orbital ranges for 2-index transformation: + + + * Fermion ircop E1g + + No orbitals for index 1 + + + * Fermion ircop E1u + + No orbitals for index 1 + + + ************************************************************************** + **************** Transformation to Molecular Spinor Basis **************** + ************************************************************************** + + + Written by Luuk Visscher, Jon Laerdahl & Trond Saue + Odense, 1997 + + + + + ********************************************************************** + **************** Transformation of property integrals **************** + ********************************************************************** + + + Transformation started at : Tue Sep 13 20:30:59 2022 + +* REACMO: Coefficients read from file DFCOEF - Total energy: -107.723155543462880 +* Heading :N2 Tue Sep 13 20:30:59 2022 + + + * Fermion ircop E1g + + Index 1 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + Index 2 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + + * Fermion ircop E1u + + Index 1 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + Index 2 15 orbitals + 1 2 3 4 5 6 7 8 9 10 11 12 + 13 14 15 + + + ************************************************************************** + **************** Transformation to Molecular Spinor Basis **************** + ************************************************************************** + + + Written by Luuk Visscher, Jon Laerdahl & Trond Saue + Odense, 1997 + + + + + ******************************************************************** + **************** Transformation of core Fock matrix **************** + ******************************************************************** + + + Transformation started at : Tue Sep 13 20:30:59 2022 + +* REACMO: Coefficients read from file DFCOEF - Total energy: -107.723155543462880 +* Heading :N2 Tue Sep 13 20:30:59 2022 + +* REAFCK: Fock matrix read from file /scr/noda/noda/DIRAC_N2_N2_134025/DFFCK1 +* Heading :N2 Tue Sep 13 20:30:59 2022 + + + Core energy (includes nuclear repulsion) : 25.9296833342 + - Electronic part : 0.0000000000 + - One-electron terms : 0.0000000000 + - Two-electron terms : 0.0000000000 + + + MOLFDIR file MRCONEE is written + - Integral class 1 : (LL|??) + - Beginning task 1 of 2 after 0. seconds and 0. CPU-seconds + - Beginning task 2 of 2 after 0. seconds and 0. CPU-seconds + - Integral class 2 : (SS|??) + Node 0 finished first half transformation 167130 HT integrals written ( 79.87%, 0.00 GB) + + + Integrals written : + >>> CPU time used in 2HT_all is 0.78 seconds + - Binary file MDCINT was written. +* Screening statistics: + (LL|LL)ints : 0.00% + Total : 0.00% + +------ Timing report (in CPU seconds) of module integral transformation + + Time in First halftransformation 0.499 seconds + Time in Second halftransformation 0.780 seconds + +------ End of timing report ------ + + + + Total wall time used in PAMTRA : 00:00:01 + Total CPU time used in PAMTRA (master only) : 00:00:01 + + Transformation ended at : Tue Sep 13 20:31:00 2022 + + +---< Process 1 of 1----< + + + + Relativistic Coupled Cluster program RELCCSD + + Written by : + Lucas Visscher + + NASA Ames Research Center (1994) + Rijks Universiteit Groningen (1995) + Odense Universitet (1996-1997) + VU University Amsterdam (1998-present) + + + This module is documented in + - Initial implementation : L. Visscher, T.J. Lee and K.G. Dyall, J. Chem. Phys. 105 (1996) 8769. + - Fock Space (FSCC) : L. Visscher, E. Eliav and U. Kaldor, J. Chem. Phys. 115 (2002) 9720. + - Parallelization : M. Pernpointner and L. Visscher, J. Comp. Chem. 24 (2003) 754. + - Intermediate Hamilt. FS: E. Eliav, M. J. Vilkas, Y. Ishikawa, and U. Kaldor, J. Chem. Phys. 122 (2005) 224113. + - MP2 expectation values : J.N.P. van Stralen, L. Visscher, C.V. Larsen and H.J.Aa. Jensen," Chem. Phys. 311 (2005) 81. + - CC expectation values : A. Shee, L. Visscher, and T. Saue, J. Chem. Phys. 145 (2016) 184107. + - EOM-IP/EA/EE energies : A. Shee, T. Saue, L. Visscher, and A.S.P. Gomes, J. Chem. Phys. 149 (2018) 174113. + - Core spectra (CVS-EOM) : L. Halbert, M. L. Vidal, A. Shee, S. Coriani, and A.S.P. Gomes, arXiv:2011.08549 + + + Today is : 13 Sep 22 + The time is : 20:31:00 + + Initializing word-addressable I/O : the FORTRAN-interface is used with 16 KB records +=========================================================================== + **RELCC: Set-up for Coupled Cluster calculations +=========================================================================== + * General print level : 0 + + Total memory available : 16384.00 MB 16.000 GB + + INFO: No old restart file(s) found! + + + Configuration in highest pointgroup + + Eg Eg Eu Eu + Spinor class : occupied 3 3 4 4 + Spinor class : virtual 12 12 11 11 + + Configuration in abelian subgroup + + 1g -1g 3g -3g 1u -1u 3u -3u + Spinor class : occupied 3 3 0 0 3 3 1 1 + Spinor class : virtual 9 9 3 3 9 9 2 2 + + + Number of electrons : 14 + Total charge of the system : 0 + Number of virtual spinors : 46 + Complex arithmetic mode : F + Do integral sorting : T + Do energy calculation : T + Do gradient calculation : F + Do response calculation : F + Debug information : F + Timing information : F + Print level : 0 + Memory limit (MWord) : 2048 + Interface used : DIRAC6 + + + Leave after calculating the total memory demand : F + Memory for reading and sorting integrals : 726050 8-byte words + Core used for calculating amplitudes : 235861 8-byte words + Core used for in core evaluation of triples : 207431 8-byte words + Memory used for active modules : 726050 8-byte words + + Predicted RelCC memory demand: 5.54 MB + Predicted RelCC memory demand: 0.005 GB + + Expanding and sorting integrals to unique types : + Type OOOO : 1171 integrals + Type VOOO : 7744 integrals + Type VVOO : 12127 integrals + Type VOVO : 52206 integrals + Type VOVV : 81716 integrals + Type VVVV : 128235 integrals + + Start sorting of integral classes at 13 Sep 22 20:31:00 + + + Sorting of first 4 classes done at 13 Sep 22 20:31:00 + + Need 1 passes to sort VOVV integrals + + Pass 1 ended at 13 Sep 22 20:31:00 + + VOVV sorting done at 13 Sep 22 20:31:00 + + Need 1 passes to sort VVVV integrals + + Pass 1 ended at 13 Sep 22 20:31:01 + + VVVV sorting done at 13 Sep 22 20:31:01 + + Reading Coulomb integrals : + File date : 13 Sep 22 + File time : 20:31:01 + # of integrals 767036 + + Finished sorting of integrals + + + Single determinant electronic energy : -133.652838877710053 + + + Checking the orbital energies, the program computes the diagonal elements of the + reconstructed Fock matrix. Differences with the reference orbital energies + are given if above a treshold or if iprnt > 1 + + Spinor Abelian Rep. Energy Recalc. Energy + + The diagonal elements of the recomputed Fock matrix (right column) are used in perturbation expressions. + + Use the perturbative values (MP2, CCSD[T]/(T)/-T) with care, especially + in open shell calculations because the orbitals need not always be + semi-canonical as was assumed in the derivation of the expressions. + The missing terms may be important ! + + + Nuclear repulsion + core energy : 25.929683334246999 + Zero order electronic energy : -70.186012074958498 + First order electronic energy : -63.466826802751548 + Electronic energy : -133.652838877710053 + SCF energy : -107.723155543463051 + + + Energy calculations + MP2 module active : T + CCSD module active : T + CCSD(T) module active : T + + + MP2 results + + SCF energy : -107.723155543463051 + MP2 correlation energy : -0.252811770693325 + Total MP2 energy : -107.975967314156378 + T1 diagnostic : 0.000000017978631 + + + CCSD options : + Maximum number of iterations : 30 + Maximum size of DIIS space : 8 + Convergence criterium : 0.1E-11 + + + CCSD results + + SCF energy : -107.723155543463051 + CCSD correlation energy : -0.252668365231671 + Total CCSD energy : -107.975823908694721 + T1 diagnostic : 0.010095890818182 + Convergence : 0.000000000000706 + Number or iterations used : 16 + + + Perturbative treatment of triple excitations + + SCF energy : -107.723155543463051 + CCSD correlation energy : -0.252668365231671 + 4th order triples correction : -0.007857214246955 + 5th order triples (T) correction : 0.000448317384889 + 5th order triples -T correction : 0.000695099281724 + Total CCSD+T energy : -107.983681122941675 + Total CCSD(T) energy : -107.983232805556781 + Total CCSD-T energy : -107.982986023659947 + + +-------------------------------------------------------------------------------- + + + Today is : 13 Sep 22 + The time is : 20:31:01 + + Status of the calculations + Integral sort # 1 : Completed, restartable + Integral sort # 2 : Completed, restartable + Fock matrix build : Completed, restartable + MP2 energy calculation : Completed, restartable + CCSD energy calculation : Completed, restartable + CCSD(T) energy calculation : Completed, restartable + CCSD(T) energy calculation : Completed, restartable + + Overview of calculated energies +@ SCF energy : -107.723155543463051 +@ MP2 correlation energy : -0.252811770693325 +@ CCSD correlation energy : -0.252668365231671 +@ 4th order triples correction : -0.007857214246955 +@ 5th order triples (T) correction : 0.000448317384889 +@ 5th order triples -T correction : 0.000695099281724 +@ Total MP2 energy : -107.975967314156378 +@ Total CCSD energy : -107.975823908694721 +@ Total CCSD+T energy : -107.983681122941675 +@ Total CCSD(T) energy : -107.983232805556781 +@ Total CCSD-T energy : -107.982986023659947 + + +-------------------------------------------------------------------------------- + +------ Timing report (in CPU seconds) of module RELCCSD + + Time in Sorting of integrals 0.233 seconds + Time in CCSD equations 0.130 seconds + Time in - T1 equations 0.027 seconds + Time in --- T1EQNS T*[HOV - F]*T 0.000 seconds + Time in --- T1EQNS HOV*T2(A,C,I,K 0.002 seconds + Time in --- T1EQNS HV*T / T*HO 0.000 seconds + Time in --- T1EQNS VOOO*TAU 0.004 seconds + Time in --- T1EQNS VOVV contribution 0.007 seconds + Time in --- T1EQNS VOVO * T(C,K) 0.004 seconds + Time in -- GOINTM 0.001 seconds + Time in -- GVINTM 0.011 seconds + Time in -- AINTM 0.003 seconds + Time in -- HINTM 0.034 seconds + Time in --- HINTM: VOVV*T 0.012 seconds + Time in --- HINTM: VVOO contribution 0.003 seconds + Time in -- T2 EQNS 0.041 seconds + Time in --- T2EQNS: TAU*AINTM contract 0.001 seconds + Time in --- T2EQNS: VOVV*T1 0.006 seconds + Time in --- T2EQNS: HINTM*T2 0.014 seconds + Time in -- BINTM 0.012 seconds + Time in - adding partial T1/T2 amplitu 0.000 seconds + Time in - DIIS extrapolation 0.009 seconds + Time in - synchronizing T1 & T2 amplit 0.000 seconds + Time in CCSD(T) evaluation 0.039 seconds + Time in -- T3CORR: Integral resorting 0.001 seconds + Time in -- T3CORR: VOVV contraction 0.018 seconds + Time in -- T3CORR: energy calculation 0.018 seconds + +------ End of timing report ------ + + + + Timing of main modules : Wallclock (s) CPU on master (s) + Before CC driver : ************ 1.80 + Initialization : 0.03 0.03 + Integral sorting : 0.23 0.23 + Energy calculation : 0.20 0.20 + First order properties : 0.00 0.00 + Second order properties : 0.00 0.00 + Fock space energies : 0.00 0.00 + EOMCC energies : 0.00 0.00 + Untimed parts : 0.00 0.00 + Total time in CC driver : 0. 0.47 + + Statistics for the word-addressable I/O + Number of write calls 2042. + Number of read calls 2060. + Megabytes written 3.370 + Megabytes read 60.790 + Seconds spent in reads 0.028 + Seconds spent in writes 0.028 + average I/O speed for write (Mb/s) 119.744 + average I/O speed for read (Mb/s) 2145.007 + + + CPU time (seconds) used in RELCCSD: 0.4674 + CPU time (seconds) used before RELCCSD: 1.7974 + CPU time (seconds) used in total sofar: 2.2647 + + --- Normal end of RELCCSD Run --- + + +################################################################################ + + + ******************************************************************* + ************************* Property module ************************* + ******************************************************************* + + + + This is output from the Dirac property module: + + * HF & DFT first order properties + Trond Saue + + * First-order ESR properties + Hans Joergen Aa. Jensen et al. + + * MP2 first order properties: + J. N. P. van Stralen, L. Visscher, C. V. Larsen and H. J. Aa Jensen, Chem. Phys. 311 (2005) 81. + + * KR-RPA second-order properties + Hans Joergen Aa. Jensen and Trond Saue + + * KR-QR third order properties + Patrick Norman and Hans Joergen Aa. Jensen + + * Oscillator strengths beyond the electric dipole approximation + N.H. List, T.R.L Melin, M. van Horn, T. Saue, J. Chem. Phys. 152 (2020) 184110 + + * Molecular gradient + Joern Thyssen + + * Additional contributions from: + Thomas Enevoldsen, Miroslav Ilias (London orbitals) + + + + + ******************************************************* + ********** Properties for DHF wave function ********** + ******************************************************* + + + + ************************************************************************** + *************************** Expectation values *************************** + ************************************************************************** + + Rho at nuc N2 01 : 250.5515011778 a.u. s0 = F t0 = F + Rho at nuc N2 02 : 0.00000000E+00 a.u. s0 = T t0 = F + --------------------------------------------------------------------------- + s0 = T : Expectation value zero by point group symmetry. + t0 = T : Expectation value zero by time reversal symmetry. +---------------------------------------------------------------------------- + + * Closing HDF5 checkpoint file + - DIRAC was compiled without hdf5, checkpointing was not possible + +***************************************************** +********** E N D of D I R A C output ********** +***************************************************** + + + + Date and time (Linux) : Tue Sep 13 20:31:01 2022 + Host name : relqc01 + +>>>> Node 0, utime: 1, stime: 1, minflt: 189049, majflt: 2, nvcsw: 205, nivcsw: 2510, maxrss: 54592 +>>>> Total WALL time used in DIRAC: 3s + + Dynamical Memory Usage Summary for Master + + Mean allocation size (Mb) : 26.12 + + Largest 10 allocations + + 488.28 Mb at subroutine pamprp_1_+0xae for WORK in PAMPRP_1 + 488.28 Mb at subroutine pamtra_+0x134 for WORK in PAMTRA + 488.28 Mb at subroutine pamana_+0x89 for WORK in PAMANA + 488.28 Mb at subroutine psiscf_+0x99 for WORK in PSISCF + 488.28 Mb at subroutine pamset_+0x357 for WORK in PAMSET - 2 + 488.28 Mb at subroutine gmotra_+0x475e for WORK in GMOTRA - part 2 + 488.28 Mb at subroutine gmotra_+0x6521 for WORK in GMOTRA + 488.28 Mb at subroutine pamset_+0x86 for WORK in PAMSET - 1 + 488.28 Mb at subroutine MAIN__+0xa2e for test allocation of work array in DIRAC mai + 3.08 Mb at subroutine ccseti_+0x3a3 for ibuf + + Peak memory usage: 488.29 MB + Peak memory usage: 0.477 GB + reached at subroutine : define_sort_+0x1fa + for variable : node_for_buffer + + MEMGET high-water mark: 0.00 MB + +***************************************************** +DIRAC pam run in /home/noda/debug_run/N2/for_test_N2 diff --git a/test/dev/c32h_n2_small_nsec_dev/reference.c32h_n2_small_nsec_dev.out b/test/dev/c32h_n2_small_nsec_dev/reference.c32h_n2_small_nsec_dev.out new file mode 100644 index 00000000..123862a1 --- /dev/null +++ b/test/dev/c32h_n2_small_nsec_dev/reference.c32h_n2_small_nsec_dev.out @@ -0,0 +1,717 @@ +initialization of mpi, rank : 0 nprocs : 1 + +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ ____ _____ _ _ _____ _____ _____ ____ _____ ___ ____ @ +@ | _ \| ____| | / \|_ _|_ _\ \ / /_ _/ ___|_ _|_ _/ ___| @ +@ | |_) | _| | | / _ \ | | | | \ \ / / | |\___ \ | | | | | @ +@ | _ <| |___| |___ / ___ \| | | | \ V / | | ___) || | | | |___ @ +@ |_|_\_\_____|_____/_/___\_\_|_|___|_ \_/ |___|____/ |_| |___\____| @ +@ / ___| / \ / ___|| _ \_ _|___ \ @ +@ | | / _ \ \___ \| |_) || | __) | @ +@ | |___ / ___ \ ___) | __/ | | / __/ @ +@ \____/_/ \_\____/|_| |_| |_____| @ +@ @ +@ Developped by Kohei Noda, Yasuto Masuda, Sumika Iwamuro, Minori Abe @ +@ Hiroshima University & Tokyo Metropolitan Univeristy @ +@ https://github.com/RQC-HU/dirac_caspt2 @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ @ +@ MMMN, .MMp @ +@ .# ?YMa, dM\Tb @ +@ .F ,MMm, dM# .W, @ +@ (F TMMp JMMt 7, @ +@ J] 4MMp .dMM@ M[ @ +@ M\ ?MMh. .(MMMF -N. @ +@ .M qMMMN+.............(+gMMMMM@^ (((() MN @ +@ (F .MT"^ _~?77?!~~???77"^ ``,! JM! @ +@ M] TN, @ +@ .M} VMp @ +@ MM .gMMMNJ. ..MMMMMa, UM2 @ +@ JP .MMMMMMMMMN, .M^MMMMN,TN, UMp @ +@ Jb M@.MMMMMM)?Mh .M^ MMMMMM] ?h MMb @ +@ .M^ .Hp 4MMMM! .Mb .M (MMMM) ..9] ...(MMNCASPT2 @ +@ .Mh.(J., TMNMMMMNM"^ 7` TWgJuMMNg&M" .d"""777MM!~??` @ +@ ..gMMMM"^ .^ ?^ ^^? q@] @ +@ .MM#"` MF ^^^ ...... ^^^ -b @ +@ , " HN{ WMMMM\ ..&,. MNMNH96jM@ @ +@ .Mh, . /M@^ // _7^WMMMMNg,. @ +@ dMugNMMMMMM9 .% M: ..M` J@ 74, @ +@ ..MMM& .. TMa....M9WNmQggN#^? jQNgg+..MF @ +@ .M@^ .dMMo..gd ^` ` ?jM RASPT2. @ +@ dF ~jMM#1. .N, .N= ` ..g# .7 @ +@ .MMTTMMNm,. -MMMWyM9- ..+MMMT=) dMM mi @ +@ .dMF 7?W""9g..., ...J"=`y"D` FFM @ +@ .MMF ^ """""""" ^ KK. @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ @ +@ This program is intended to be used after HF and MO transformation @ +@ calculations uisng the DIRAC software. @ +@ https://www.diracprogram.org/doku.php?id=start @ +@ @ +@ You can use, redistribute and/or modify this program under the terms @ +@ of the GNU Lesser General Public License version 2.1 as published @ +@ by the Free Software Foundation. @ +@ @ +@ Please cite the following paper when you publish the data obtained @ +@ using this program. @ +@ 1. Masuda Y, Noda K, Iwamuro S, Nakatani N, Hada M, Abe M. @ +@ Relativistic CASPT2/RASPT2 Program along with DIRAC software. @ +@ ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-t9x0l @ +@ This content is a preprint and has not been peer-reviewed. @ +@ @ +@ We do not take any responsibility for the results produced @ +@ by this program. @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + + + Input file: + ```inp + .ninact + 8 + .nact + 8 + .nsec + !44 ! nmo in MRCONEE is 8 + 8 + 44 = 60 + 40 + .nelec + 6 + .caspt2_ciroots + 33 1 + .eshift + 0.0 + .diracver + 22 + .subprograms + CASCI + CASPT2 + .end + ``` + + + Reading MRCONEE (1-e integrals) + filename = MRCONEE + DIRAC seems to be compiled with 64-bit integer. + Information from MRCONEE + NMO, BREIT, ECORE + 60 F 25.9296833342470 + NSYMRP, (REPN(IRP),IRP=1,NSYMRP) + 4 Eg 1Eg Eg 2Eg Eu 1Eu Eu 2Eu + NSYMRPA, (REPNA(IRP),IRP=1,NSYMRPA*2) + 32 1g -1g 3g -3g 5g -5g 7g -7g 9g -9g 11g-11g 13g-13g + 15g-15g 1u -1u 3u -3u 5u -5u 7u -7u 9u -9u 11u-11u 13u-13u 15u-15u 0g + 2g -2g 4g -4g 6g -6g 8g -8g 10g-10g 12g-12g 14g-14g 16g 0u 2u -2u 4u + -4u 6u -6u 8u -8u 10u-10u 12u-12u 14u-14u 16u + MULTB + 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 1 3 2 5 4 7 6 9 8 11 10 13 12 15 14 16 17 19 18 21 20 23 22 25 24 27 26 29 28 31 30 32 + 33 35 34 37 36 39 38 41 40 43 42 45 44 47 46 48 49 51 50 53 52 55 54 57 56 59 58 61 60 63 62 64 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 + 36 34 38 33 40 35 42 37 44 39 46 41 48 43 47 45 52 50 54 49 56 51 58 53 60 55 62 57 64 59 63 61 3 5 1 7 2 9 4 11 6 13 8 15 10 16 12 14 19 21 17 23 18 25 20 27 22 29 24 31 26 32 28 30 + 35 37 33 39 34 41 36 43 38 45 40 47 42 48 44 46 51 53 49 55 50 57 52 59 54 61 56 63 58 64 60 62 4 2 6 1 8 3 10 5 12 7 14 9 16 11 15 13 20 18 22 17 24 19 26 21 28 23 30 25 32 27 31 29 + 38 36 40 34 42 33 44 35 46 37 48 39 47 41 45 43 54 52 56 50 58 49 60 51 62 53 64 55 63 57 61 59 5 7 3 9 1 11 2 13 4 15 6 16 8 14 10 12 21 23 19 25 17 27 18 29 20 31 22 32 24 30 26 28 + 37 39 35 41 33 43 34 45 36 47 38 48 40 46 42 44 53 55 51 57 49 59 50 61 52 63 54 64 56 62 58 60 6 4 8 2 10 1 12 3 14 5 16 7 15 9 13 11 22 20 24 18 26 17 28 19 30 21 32 23 31 25 29 27 + 40 38 42 36 44 34 46 33 48 35 47 37 45 39 43 41 56 54 58 52 60 50 62 49 64 51 63 53 61 55 59 57 7 9 5 11 3 13 1 15 2 16 4 14 6 12 8 10 23 25 21 27 19 29 17 31 18 32 20 30 22 28 24 26 + 39 41 37 43 35 45 33 47 34 48 36 46 38 44 40 42 55 57 53 59 51 61 49 63 50 64 52 62 54 60 56 58 8 6 10 4 12 2 14 1 16 3 15 5 13 7 11 9 24 22 26 20 28 18 30 17 32 19 31 21 29 23 27 25 + 42 40 44 38 46 36 48 34 47 33 45 35 43 37 41 39 58 56 60 54 62 52 64 50 63 49 61 51 59 53 57 55 9 11 7 13 5 15 3 16 1 14 2 12 4 10 6 8 25 27 23 29 21 31 19 32 17 30 18 28 20 26 22 24 + 41 43 39 45 37 47 35 48 33 46 34 44 36 42 38 40 57 59 55 61 53 63 51 64 49 62 50 60 52 58 54 56 10 8 12 6 14 4 16 2 15 1 13 3 11 5 9 7 26 24 28 22 30 20 32 18 31 17 29 19 27 21 25 23 + 44 42 46 40 48 38 47 36 45 34 43 33 41 35 39 37 60 58 62 56 64 54 63 52 61 50 59 49 57 51 55 53 11 13 9 15 7 16 5 14 3 12 1 10 2 8 4 6 27 29 25 31 23 32 21 30 19 28 17 26 18 24 20 22 + 43 45 41 47 39 48 37 46 35 44 33 42 34 40 36 38 59 61 57 63 55 64 53 62 51 60 49 58 50 56 52 54 12 10 14 8 16 6 15 4 13 2 11 1 9 3 7 5 28 26 30 24 32 22 31 20 29 18 27 17 25 19 23 21 + 46 44 48 42 47 40 45 38 43 36 41 34 39 33 37 35 62 60 64 58 63 56 61 54 59 52 57 50 55 49 53 51 13 15 11 16 9 14 7 12 5 10 3 8 1 6 2 4 29 31 27 32 25 30 23 28 21 26 19 24 17 22 18 20 + 45 47 43 48 41 46 39 44 37 42 35 40 33 38 34 36 61 63 59 64 57 62 55 60 53 58 51 56 49 54 50 52 14 12 16 10 15 8 13 6 11 4 9 2 7 1 5 3 30 28 32 26 31 24 29 22 27 20 25 18 23 17 21 19 + 48 46 47 44 45 42 43 40 41 38 39 36 37 34 35 33 64 62 63 60 61 58 59 56 57 54 55 52 53 50 51 49 15 16 13 14 11 12 9 10 7 8 5 6 3 4 1 2 31 32 29 30 27 28 25 26 23 24 21 22 19 20 17 18 + 47 48 45 46 43 44 41 42 39 40 37 38 35 36 33 34 63 64 61 62 59 60 57 58 55 56 53 54 51 52 49 50 16 14 15 12 13 10 11 8 9 6 7 4 5 2 3 1 32 30 31 28 29 26 27 24 25 22 23 20 21 18 19 17 + 50 49 52 51 54 53 56 55 58 57 60 59 62 61 64 63 34 33 36 35 38 37 40 39 42 41 44 43 46 45 48 47 17 19 18 21 20 23 22 25 24 27 26 29 28 31 30 32 1 3 2 5 4 7 6 9 8 11 10 13 12 15 14 16 + 49 51 50 53 52 55 54 57 56 59 58 61 60 63 62 64 33 35 34 37 36 39 38 41 40 43 42 45 44 47 46 48 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 + 52 50 54 49 56 51 58 53 60 55 62 57 64 59 63 61 36 34 38 33 40 35 42 37 44 39 46 41 48 43 47 45 19 21 17 23 18 25 20 27 22 29 24 31 26 32 28 30 3 5 1 7 2 9 4 11 6 13 8 15 10 16 12 14 + 51 53 49 55 50 57 52 59 54 61 56 63 58 64 60 62 35 37 33 39 34 41 36 43 38 45 40 47 42 48 44 46 20 18 22 17 24 19 26 21 28 23 30 25 32 27 31 29 4 2 6 1 8 3 10 5 12 7 14 9 16 11 15 13 + 54 52 56 50 58 49 60 51 62 53 64 55 63 57 61 59 38 36 40 34 42 33 44 35 46 37 48 39 47 41 45 43 21 23 19 25 17 27 18 29 20 31 22 32 24 30 26 28 5 7 3 9 1 11 2 13 4 15 6 16 8 14 10 12 + 53 55 51 57 49 59 50 61 52 63 54 64 56 62 58 60 37 39 35 41 33 43 34 45 36 47 38 48 40 46 42 44 22 20 24 18 26 17 28 19 30 21 32 23 31 25 29 27 6 4 8 2 10 1 12 3 14 5 16 7 15 9 13 11 + 56 54 58 52 60 50 62 49 64 51 63 53 61 55 59 57 40 38 42 36 44 34 46 33 48 35 47 37 45 39 43 41 23 25 21 27 19 29 17 31 18 32 20 30 22 28 24 26 7 9 5 11 3 13 1 15 2 16 4 14 6 12 8 10 + 55 57 53 59 51 61 49 63 50 64 52 62 54 60 56 58 39 41 37 43 35 45 33 47 34 48 36 46 38 44 40 42 24 22 26 20 28 18 30 17 32 19 31 21 29 23 27 25 8 6 10 4 12 2 14 1 16 3 15 5 13 7 11 9 + 58 56 60 54 62 52 64 50 63 49 61 51 59 53 57 55 42 40 44 38 46 36 48 34 47 33 45 35 43 37 41 39 25 27 23 29 21 31 19 32 17 30 18 28 20 26 22 24 9 11 7 13 5 15 3 16 1 14 2 12 4 10 6 8 + 57 59 55 61 53 63 51 64 49 62 50 60 52 58 54 56 41 43 39 45 37 47 35 48 33 46 34 44 36 42 38 40 26 24 28 22 30 20 32 18 31 17 29 19 27 21 25 23 10 8 12 6 14 4 16 2 15 1 13 3 11 5 9 7 + 60 58 62 56 64 54 63 52 61 50 59 49 57 51 55 53 44 42 46 40 48 38 47 36 45 34 43 33 41 35 39 37 27 29 25 31 23 32 21 30 19 28 17 26 18 24 20 22 11 13 9 15 7 16 5 14 3 12 1 10 2 8 4 6 + 59 61 57 63 55 64 53 62 51 60 49 58 50 56 52 54 43 45 41 47 39 48 37 46 35 44 33 42 34 40 36 38 28 26 30 24 32 22 31 20 29 18 27 17 25 19 23 21 12 10 14 8 16 6 15 4 13 2 11 1 9 3 7 5 + 62 60 64 58 63 56 61 54 59 52 57 50 55 49 53 51 46 44 48 42 47 40 45 38 43 36 41 34 39 33 37 35 29 31 27 32 25 30 23 28 21 26 19 24 17 22 18 20 13 15 11 16 9 14 7 12 5 10 3 8 1 6 2 4 + 61 63 59 64 57 62 55 60 53 58 51 56 49 54 50 52 45 47 43 48 41 46 39 44 37 42 35 40 33 38 34 36 30 28 32 26 31 24 29 22 27 20 25 18 23 17 21 19 14 12 16 10 15 8 13 6 11 4 9 2 7 1 5 3 + 64 62 63 60 61 58 59 56 57 54 55 52 53 50 51 49 48 46 47 44 45 42 43 40 41 38 39 36 37 34 35 33 31 32 29 30 27 28 25 26 23 24 21 22 19 20 17 18 15 16 13 14 11 12 9 10 7 8 5 6 3 4 1 2 + 63 64 61 62 59 60 57 58 55 56 53 54 51 52 49 50 47 48 45 46 43 44 41 42 39 40 37 38 35 36 33 34 32 30 31 28 29 26 27 24 25 22 23 20 21 18 19 17 16 14 15 12 13 10 11 8 9 6 7 4 5 2 3 1 + 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 + 3 1 5 2 7 4 9 6 11 8 13 10 15 12 16 14 19 17 21 18 23 20 25 22 27 24 29 26 31 28 32 30 34 36 33 38 35 40 37 42 39 44 41 46 43 48 45 47 50 52 49 54 51 56 53 58 55 60 57 62 59 64 61 63 + 2 4 1 6 3 8 5 10 7 12 9 14 11 16 13 15 18 20 17 22 19 24 21 26 23 28 25 30 27 32 29 31 35 33 37 34 39 36 41 38 43 40 45 42 47 44 48 46 51 49 53 50 55 52 57 54 59 56 61 58 63 60 64 62 + 5 3 7 1 9 2 11 4 13 6 15 8 16 10 14 12 21 19 23 17 25 18 27 20 29 22 31 24 32 26 30 28 36 38 34 40 33 42 35 44 37 46 39 48 41 47 43 45 52 54 50 56 49 58 51 60 53 62 55 64 57 63 59 61 + 4 6 2 8 1 10 3 12 5 14 7 16 9 15 11 13 20 22 18 24 17 26 19 28 21 30 23 32 25 31 27 29 37 35 39 33 41 34 43 36 45 38 47 40 48 42 46 44 53 51 55 49 57 50 59 52 61 54 63 56 64 58 62 60 + 7 5 9 3 11 1 13 2 15 4 16 6 14 8 12 10 23 21 25 19 27 17 29 18 31 20 32 22 30 24 28 26 38 40 36 42 34 44 33 46 35 48 37 47 39 45 41 43 54 56 52 58 50 60 49 62 51 64 53 63 55 61 57 59 + 6 8 4 10 2 12 1 14 3 16 5 15 7 13 9 11 22 24 20 26 18 28 17 30 19 32 21 31 23 29 25 27 39 37 41 35 43 33 45 34 47 36 48 38 46 40 44 42 55 53 57 51 59 49 61 50 63 52 64 54 62 56 60 58 + 9 7 11 5 13 3 15 1 16 2 14 4 12 6 10 8 25 23 27 21 29 19 31 17 32 18 30 20 28 22 26 24 40 42 38 44 36 46 34 48 33 47 35 45 37 43 39 41 56 58 54 60 52 62 50 64 49 63 51 61 53 59 55 57 + 8 10 6 12 4 14 2 16 1 15 3 13 5 11 7 9 24 26 22 28 20 30 18 32 17 31 19 29 21 27 23 25 41 39 43 37 45 35 47 33 48 34 46 36 44 38 42 40 57 55 59 53 61 51 63 49 64 50 62 52 60 54 58 56 + 11 9 13 7 15 5 16 3 14 1 12 2 10 4 8 6 27 25 29 23 31 21 32 19 30 17 28 18 26 20 24 22 42 44 40 46 38 48 36 47 34 45 33 43 35 41 37 39 58 60 56 62 54 64 52 63 50 61 49 59 51 57 53 55 + 10 12 8 14 6 16 4 15 2 13 1 11 3 9 5 7 26 28 24 30 22 32 20 31 18 29 17 27 19 25 21 23 43 41 45 39 47 37 48 35 46 33 44 34 42 36 40 38 59 57 61 55 63 53 64 51 62 49 60 50 58 52 56 54 + 13 11 15 9 16 7 14 5 12 3 10 1 8 2 6 4 29 27 31 25 32 23 30 21 28 19 26 17 24 18 22 20 44 46 42 48 40 47 38 45 36 43 34 41 33 39 35 37 60 62 58 64 56 63 54 61 52 59 50 57 49 55 51 53 + 12 14 10 16 8 15 6 13 4 11 2 9 1 7 3 5 28 30 26 32 24 31 22 29 20 27 18 25 17 23 19 21 45 43 47 41 48 39 46 37 44 35 42 33 40 34 38 36 61 59 63 57 64 55 62 53 60 51 58 49 56 50 54 52 + 15 13 16 11 14 9 12 7 10 5 8 3 6 1 4 2 31 29 32 27 30 25 28 23 26 21 24 19 22 17 20 18 46 48 44 47 42 45 40 43 38 41 36 39 34 37 33 35 62 64 60 63 58 61 56 59 54 57 52 55 50 53 49 51 + 14 16 12 15 10 13 8 11 6 9 4 7 2 5 1 3 30 32 28 31 26 29 24 27 22 25 20 23 18 21 17 19 47 45 48 43 46 41 44 39 42 37 40 35 38 33 36 34 63 61 64 59 62 57 60 55 58 53 56 51 54 49 52 50 + 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 + 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 + 19 17 21 18 23 20 25 22 27 24 29 26 31 28 32 30 3 1 5 2 7 4 9 6 11 8 13 10 15 12 16 14 50 52 49 54 51 56 53 58 55 60 57 62 59 64 61 63 34 36 33 38 35 40 37 42 39 44 41 46 43 48 45 47 + 18 20 17 22 19 24 21 26 23 28 25 30 27 32 29 31 2 4 1 6 3 8 5 10 7 12 9 14 11 16 13 15 51 49 53 50 55 52 57 54 59 56 61 58 63 60 64 62 35 33 37 34 39 36 41 38 43 40 45 42 47 44 48 46 + 21 19 23 17 25 18 27 20 29 22 31 24 32 26 30 28 5 3 7 1 9 2 11 4 13 6 15 8 16 10 14 12 52 54 50 56 49 58 51 60 53 62 55 64 57 63 59 61 36 38 34 40 33 42 35 44 37 46 39 48 41 47 43 45 + 20 22 18 24 17 26 19 28 21 30 23 32 25 31 27 29 4 6 2 8 1 10 3 12 5 14 7 16 9 15 11 13 53 51 55 49 57 50 59 52 61 54 63 56 64 58 62 60 37 35 39 33 41 34 43 36 45 38 47 40 48 42 46 44 + 23 21 25 19 27 17 29 18 31 20 32 22 30 24 28 26 7 5 9 3 11 1 13 2 15 4 16 6 14 8 12 10 54 56 52 58 50 60 49 62 51 64 53 63 55 61 57 59 38 40 36 42 34 44 33 46 35 48 37 47 39 45 41 43 + 22 24 20 26 18 28 17 30 19 32 21 31 23 29 25 27 6 8 4 10 2 12 1 14 3 16 5 15 7 13 9 11 55 53 57 51 59 49 61 50 63 52 64 54 62 56 60 58 39 37 41 35 43 33 45 34 47 36 48 38 46 40 44 42 + 25 23 27 21 29 19 31 17 32 18 30 20 28 22 26 24 9 7 11 5 13 3 15 1 16 2 14 4 12 6 10 8 56 58 54 60 52 62 50 64 49 63 51 61 53 59 55 57 40 42 38 44 36 46 34 48 33 47 35 45 37 43 39 41 + 24 26 22 28 20 30 18 32 17 31 19 29 21 27 23 25 8 10 6 12 4 14 2 16 1 15 3 13 5 11 7 9 57 55 59 53 61 51 63 49 64 50 62 52 60 54 58 56 41 39 43 37 45 35 47 33 48 34 46 36 44 38 42 40 + 27 25 29 23 31 21 32 19 30 17 28 18 26 20 24 22 11 9 13 7 15 5 16 3 14 1 12 2 10 4 8 6 58 60 56 62 54 64 52 63 50 61 49 59 51 57 53 55 42 44 40 46 38 48 36 47 34 45 33 43 35 41 37 39 + 26 28 24 30 22 32 20 31 18 29 17 27 19 25 21 23 10 12 8 14 6 16 4 15 2 13 1 11 3 9 5 7 59 57 61 55 63 53 64 51 62 49 60 50 58 52 56 54 43 41 45 39 47 37 48 35 46 33 44 34 42 36 40 38 + 29 27 31 25 32 23 30 21 28 19 26 17 24 18 22 20 13 11 15 9 16 7 14 5 12 3 10 1 8 2 6 4 60 62 58 64 56 63 54 61 52 59 50 57 49 55 51 53 44 46 42 48 40 47 38 45 36 43 34 41 33 39 35 37 + 28 30 26 32 24 31 22 29 20 27 18 25 17 23 19 21 12 14 10 16 8 15 6 13 4 11 2 9 1 7 3 5 61 59 63 57 64 55 62 53 60 51 58 49 56 50 54 52 45 43 47 41 48 39 46 37 44 35 42 33 40 34 38 36 + 31 29 32 27 30 25 28 23 26 21 24 19 22 17 20 18 15 13 16 11 14 9 12 7 10 5 8 3 6 1 4 2 62 64 60 63 58 61 56 59 54 57 52 55 50 53 49 51 46 48 44 47 42 45 40 43 38 41 36 39 34 37 33 35 + 30 32 28 31 26 29 24 27 22 25 20 23 18 21 17 19 14 16 12 15 10 13 8 11 6 9 4 7 2 5 1 3 63 61 64 59 62 57 60 55 58 53 56 51 54 49 52 50 47 45 48 43 46 41 44 39 42 37 40 35 38 33 36 34 + 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 + +---------------------------------------------------------------- + energy-order Dirac orbtal energy irrep irrep + index index (a.u.) index string +---------------------------------------------------------------- + inactive 1 1 -0.1547843500E+02 1 1g + inactive 2 16 -0.1547843500E+02 2 -1g + inactive 3 31 -0.1547171312E+02 17 1u + inactive 4 46 -0.1547171312E+02 18 -1u + inactive 5 2 -0.1565531342E+01 1 1g + inactive 6 17 -0.1565531342E+01 2 -1g + inactive 7 32 -0.7134975799E+00 17 1u + inactive 8 47 -0.7134975799E+00 18 -1u + active 9 33 -0.6331055573E+00 17 1u + active 10 48 -0.6331055573E+00 18 -1u + active 11 34 -0.6327385145E+00 20 -3u + active 12 49 -0.6327385145E+00 19 3u + active 13 3 -0.5979846687E+00 1 1g + active 14 18 -0.5979846687E+00 2 -1g + active 15 4 0.2663058042E+00 1 1g + active 16 19 0.2663058042E+00 2 -1g + secondary 17 5 0.2665434262E+00 4 -3g + secondary 18 20 0.2665434262E+00 3 3g + secondary 19 35 0.8439713540E+00 17 1u + secondary 20 50 0.8439713540E+00 18 -1u + secondary 21 6 0.9539627871E+00 1 1g + secondary 22 21 0.9539627871E+00 2 -1g + secondary 23 36 0.1058117038E+01 17 1u + secondary 24 51 0.1058117038E+01 18 -1u + secondary 25 37 0.1058414040E+01 20 -3u + secondary 26 52 0.1058414040E+01 19 3u + secondary 27 7 0.1254430433E+01 1 1g + secondary 28 22 0.1254430433E+01 2 -1g + secondary 29 8 0.1300726932E+01 1 1g + secondary 30 23 0.1300726932E+01 2 -1g + secondary 31 9 0.1301140961E+01 4 -3g + secondary 32 24 0.1301140961E+01 3 3g + secondary 33 38 0.1406444433E+01 17 1u + secondary 34 53 0.1406444433E+01 18 -1u + secondary 35 39 0.2049583353E+01 17 1u + secondary 36 54 0.2049583353E+01 18 -1u + secondary 37 40 0.5841735551E+01 17 1u + secondary 38 55 0.5841735551E+01 18 -1u + secondary 39 41 0.5863811803E+01 17 1u + secondary 40 56 0.5863811803E+01 18 -1u + secondary 41 42 0.5865795468E+01 20 -3u + secondary 42 57 0.5865795468E+01 19 3u + secondary 43 10 0.6135623135E+01 1 1g + secondary 44 25 0.6135623135E+01 2 -1g + secondary 45 11 0.6137629050E+01 4 -3g + secondary 46 26 0.6137629050E+01 3 3g + secondary 47 12 0.6505919178E+01 1 1g + secondary 48 27 0.6505919178E+01 2 -1g + secondary 49 13 0.8376174475E+01 1 1g + secondary 50 28 0.8376174475E+01 2 -1g + secondary 51 43 0.8671507020E+01 17 1u + secondary 52 58 0.8671507020E+01 18 -1u + secondary 53 14 0.3002901060E+02 1 1g + secondary 54 29 0.3002901060E+02 2 -1g + secondary 55 44 0.3033515286E+02 17 1u + secondary 56 59 0.3033515286E+02 18 -1u + + MDCINT realonly = T + +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ ____ _____ _ _ _____ _____ _____ ____ _____ ___ ____ @ +@ | _ \| ____| | / \|_ _|_ _\ \ / /_ _/ ___|_ _|_ _/ ___| @ +@ | |_) | _| | | / _ \ | | | | \ \ / / | |\___ \ | | | | | @ +@ | _ <| |___| |___ / ___ \| | | | \ V / | | ___) || | | | |___ @ +@ |_|_\_\_____|_____/_/___\_\_|_|___|_ \_/ |___|____/ |_| |___\____| @ +@ ____ _ ____ ____ ___ @ +@ / ___| / \ / ___| / ___|_ _| @ +@ | | / _ \ \___ \| | | | @ +@ | |___ / ___ \ ___) | |___ | | @ +@ \____/_/ \_\____/ \____|___| @ +@ @ +@ Developped by Kohei Noda, Yasuto Masuda, Sumika Iwamuro, Minori Abe @ +@ Hiroshima University & Tokyo Metropolitan Univeristy @ +@ https://github.com/RQC-HU/dirac_caspt2 @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ @ +@ MMMN, .MMp @ +@ .# ?YMa, dM\Tb @ +@ .F ,MMm, dM# .W, @ +@ (F TMMp JMMt 7, @ +@ J] 4MMp .dMM@ M[ @ +@ M\ ?MMh. .(MMMF -N. @ +@ .M qMMMN+.............(+gMMMMM@^ (((() MN @ +@ (F .MT"^ _~?77?!~~???77"^ ``,! JM! @ +@ M] TN, @ +@ .M} VMp @ +@ MM .gMMMNJ. ..MMMMMa, UM2 @ +@ JP .MMMMMMMMMN, .M^MMMMN,TN, UMp @ +@ Jb M@.MMMMMM)?Mh .M^ MMMMMM] ?h MMb @ +@ .M^ .Hp 4MMMM! .Mb .M (MMMM) ..9] ...(MMNCASPT2 @ +@ .Mh.(J., TMNMMMMNM"^ 7` TWgJuMMNg&M" .d"""777MM!~??` @ +@ ..gMMMM"^ .^ ?^ ^^? q@] @ +@ .MM#"` MF ^^^ ...... ^^^ -b @ +@ , " HN{ WMMMM\ ..&,. MNMNH96jM@ @ +@ .Mh, . /M@^ // _7^WMMMMNg,. @ +@ dMugNMMMMMM9 .% M: ..M` J@ 74, @ +@ ..MMM& .. TMa....M9WNmQggN#^? jQNgg+..MF @ +@ .M@^ .dMMo..gd ^` ` ?jM RASPT2. @ +@ dF ~jMM#1. .N, .N= ` ..g# .7 @ +@ .MMTTMMNm,. -MMMWyM9- ..+MMMT=) dMM mi @ +@ .dMF 7?W""9g..., ...J"=`y"D` FFM @ +@ .MMF ^ """""""" ^ KK. @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ @ +@ This program is intended to be used after HF and MO transformation @ +@ calculations uisng the DIRAC software. @ +@ https://www.diracprogram.org/doku.php?id=start @ +@ @ +@ You can use, redistribute and/or modify this program under the terms @ +@ of the GNU Lesser General Public License version 2.1 as published @ +@ by the Free Software Foundation. @ +@ @ +@ Please cite the following paper when you publish the data obtained @ +@ using this program. @ +@ 1. Masuda Y, Noda K, Iwamuro S, Nakatani N, Hada M, Abe M. @ +@ Relativistic CASPT2/RASPT2 Program along with DIRAC software. @ +@ ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-t9x0l @ +@ This content is a preprint and has not been peer-reviewed. @ +@ @ +@ We do not take any responsibility for the results produced @ +@ by this program. @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + + + ENTER RELATIVISTIC CASCI PROGRAM + +Master rank allocated memory size: 0.00 bytes +Present time is +YEAR = 2025 MONTH = 1 DATE = 17 +HOUR = 22 MIN = 29 SEC = 43.728 + ninact = 8 + nact = 8 + nsec = 40 + nelec = 6 + nroot = 10 + selectroot = 1 + totsym = 33 + eshift = 0.0000000000E+00 + diracver = 22 + scheme = 6 + ras1_max_hole = 0 + ras3_max_elec = 0 + minholeras1 = 0 + debugprint = F + +computational time = 0 day 0 h 0 min 0.000 sec + Start create_newmdcint + End create_newmdcint +computational time = 0 day 0 h 0 min 0.144 sec + Enter readint2_casci subroutine (realonly) +Master rank allocated memory size: 6.83 MB + end Read mdcint normal + End MPI_Allreduce inttwr, inttwi, int2r_f1, int2i_f1, int2r_f2, int2i_f2 + nmo = 60 +Master rank allocated memory size: 6.75 MB + + ******************************* + + IREP IS 0g + + ******************************* + + Number of candidates for configuration of CASCI = 28 + total symmetry of CASCI configuration = 33 + Number of CASCI configuration = 6 + WARNING: ndet < nroot +Cannot print 10th RASCI/CASCI energy +because the number of CASCI configuration is 6 and it is less than 10 + Therefore, replace nroot with the number of CASCI configuration. + new nroot = 6 + Cas mat enter + end casmat_real + Start mat diagonalization + ndet before diagonalization 6 + End mat diagonalization +computational time = 0 day 0 h 0 min 0.016 sec +CASCI ENERGY FOR 33 STATE +CASCI Total Energy ROOT1 -107.74149572896827464774 a.u. +CASCI Total Energy ROOT2 -107.35955115239504209512 a.u. +CASCI Total Energy ROOT3 -107.35955114220404027492 a.u. +CASCI Total Energy ROOT4 -106.89259754221156129006 a.u. +CASCI Total Energy ROOT5 -106.84462652881818200967 a.u. +CASCI Total Energy ROOT6 -106.62765243489904776197 a.u. +Root = 1 + T T T T T T F F + 1 -0.9917036E+00 Weights 0.9834761E+00 + F F T T T T T T + 6 0.1195900E+00 Weights 0.1430176E-01 +Root = 2 + T T T T F T T F + 2 -0.7071111E+00 Weights 0.5000061E+00 + T T T T T F F T + 3 0.7071024E+00 Weights 0.4999938E+00 +Root = 3 + T T T T F T T F + 2 0.7071024E+00 Weights 0.4999938E+00 + T T T T T F F T + 3 0.7071111E+00 Weights 0.5000062E+00 +Root = 4 + T T T T F F T T + 4 -0.5371039E+00 Weights 0.2884806E+00 + T T F F T T T T + 5 0.8372695E+00 Weights 0.7010201E+00 + F F T T T T T T + 6 -0.1018942E+00 Weights 0.1038242E-01 +Root = 5 + T T T T F F T T + 4 -0.8240411E+00 Weights 0.6790437E+00 + T T F F T T T T + 5 -0.4953576E+00 Weights 0.2453791E+00 + F F T T T T T T + 6 0.2746285E+00 Weights 0.7542084E-01 +Root = 6 + T T T T T T F F + 1 0.1274785E+00 Weights 0.1625076E-01 + T T T T F F T T + 4 0.1759698E+00 Weights 0.3096535E-01 + T T F F T T T T + 5 0.2299759E+00 Weights 0.5288891E-01 + F F T T T T T T + 6 0.9486279E+00 Weights 0.8998949E+00 + enter e0test + core energy = 25.9296833342470 + energyHF(1) (-197.119665680462,0.000000000000000E+000) + energyHF(2) (63.4668268027516,0.000000000000000E+000) + energyHF = (-107.723155543463,0.000000000000000E+000) + energyHF(MRCONEE) = -107.723155543463 + energyHF(MRCONEE) - energyHF = (5.684341886080801E-014,0.000000000000000E+000) + ------------------------------------------------------------------------- + NOTE: + If DIRAC HF calculation was calculated with closed shell orbitals, + the energyHF obtained from MRCONEE should be + approximately the same as the energyHF. + But if DIRAC HF calculation was calculated with open shell orbitals, + the two energies may be different because DIRAC calculates the HF energy + by AOC-HF method as default. + ------------------------------------------------------------------------- +selectroot 1 + energy 1 = (-147.984454018840,0.000000000000000E+000) + energy 2 = (26.0076639467072,0.000000000000000E+000) + energy 3 = (-19.6012077977401,0.000000000000000E+000) + energy 4 = (7.90681880665762,0.000000000000000E+000) + t-energy(1-4) (-133.671179063215,0.000000000000000E+000) + t-energy -133.671179063215 + C the error (-2.842170943040401E-014,0.000000000000000E+000) +Master rank allocated memory size: 6.75 MB +Master rank allocated memory size: 288.00 bytes +computational time = 0 day 0 h 0 min 0.178 sec + End r4dcasci part + +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ ____ _____ _ _ _____ _____ _____ ____ _____ ___ ____ @ +@ | _ \| ____| | / \|_ _|_ _\ \ / /_ _/ ___|_ _|_ _/ ___| @ +@ | |_) | _| | | / _ \ | | | | \ \ / / | |\___ \ | | | | | @ +@ | _ <| |___| |___ / ___ \| | | | \ V / | | ___) || | | | |___ @ +@ |_|_\_\_____|_____/_/___\_\_|_|___|_ \_/ |___|____/ |_| |___\____| @ +@ / ___| / \ / ___|| _ \_ _|___ \ @ +@ | | / _ \ \___ \| |_) || | __) | @ +@ | |___ / ___ \ ___) | __/ | | / __/ @ +@ \____/_/ \_\____/|_| |_| |_____| @ +@ @ +@ Developped by Kohei Noda, Yasuto Masuda, Sumika Iwamuro, Minori Abe @ +@ Hiroshima University & Tokyo Metropolitan Univeristy @ +@ https://github.com/RQC-HU/dirac_caspt2 @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ @ +@ MMMN, .MMp @ +@ .# ?YMa, dM\Tb @ +@ .F ,MMm, dM# .W, @ +@ (F TMMp JMMt 7, @ +@ J] 4MMp .dMM@ M[ @ +@ M\ ?MMh. .(MMMF -N. @ +@ .M qMMMN+.............(+gMMMMM@^ (((() MN @ +@ (F .MT"^ _~?77?!~~???77"^ ``,! JM! @ +@ M] TN, @ +@ .M} VMp @ +@ MM .gMMMNJ. ..MMMMMa, UM2 @ +@ JP .MMMMMMMMMN, .M^MMMMN,TN, UMp @ +@ Jb M@.MMMMMM)?Mh .M^ MMMMMM] ?h MMb @ +@ .M^ .Hp 4MMMM! .Mb .M (MMMM) ..9] ...(MMNCASPT2 @ +@ .Mh.(J., TMNMMMMNM"^ 7` TWgJuMMNg&M" .d"""777MM!~??` @ +@ ..gMMMM"^ .^ ?^ ^^? q@] @ +@ .MM#"` MF ^^^ ...... ^^^ -b @ +@ , " HN{ WMMMM\ ..&,. MNMNH96jM@ @ +@ .Mh, . /M@^ // _7^WMMMMNg,. @ +@ dMugNMMMMMM9 .% M: ..M` J@ 74, @ +@ ..MMM& .. TMa....M9WNmQggN#^? jQNgg+..MF @ +@ .M@^ .dMMo..gd ^` ` ?jM RASPT2. @ +@ dF ~jMM#1. .N, .N= ` ..g# .7 @ +@ .MMTTMMNm,. -MMMWyM9- ..+MMMT=) dMM mi @ +@ .dMF 7?W""9g..., ...J"=`y"D` FFM @ +@ .MMF ^ """""""" ^ KK. @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ +@ @ +@ This program is intended to be used after HF and MO transformation @ +@ calculations uisng the DIRAC software. @ +@ https://www.diracprogram.org/doku.php?id=start @ +@ @ +@ You can use, redistribute and/or modify this program under the terms @ +@ of the GNU Lesser General Public License version 2.1 as published @ +@ by the Free Software Foundation. @ +@ @ +@ Please cite the following paper when you publish the data obtained @ +@ using this program. @ +@ 1. Masuda Y, Noda K, Iwamuro S, Nakatani N, Hada M, Abe M. @ +@ Relativistic CASPT2/RASPT2 Program along with DIRAC software. @ +@ ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-t9x0l @ +@ This content is a preprint and has not been peer-reviewed. @ +@ @ +@ We do not take any responsibility for the results produced @ +@ by this program. @ +@ @ +@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ + + + START RELATIVISIC CASPT2 PROGRAM + +Master rank allocated memory size: 0.00 bytes +Present time is +YEAR = 2025 MONTH = 1 DATE = 17 +HOUR = 22 MIN = 29 SEC = 43.906 + ninact = 8 + nact = 8 + nsec = 40 + nelec = 6 + nroot = 6 + selectroot = 1 + totsym = 33 + eshift = 0.0000000000E+00 + diracver = 22 + scheme = 6 + ras1_max_hole = 0 + ras3_max_elec = 0 + minholeras1 = 0 + debugprint = F + + Reading MDCINT (2-e integrals) +Master rank allocated memory size: 0.00 bytes + nmo = 60 + Enter readint2_casci subroutine (realonly) +Master rank allocated memory size: 6.83 MB + end Read mdcint normal + End MPI_Allreduce inttwr, inttwi, int2r_f1, int2i_f1, int2r_f2, int2i_f2 +computational time = 0 day 0 h 0 min 0.054 sec + end building fock +computational time = 0 day 0 h 0 min 0.004 sec + + ******************************* + +IRREP = 0g + + ******************************* + + selectroot = 1 +computational time = 0 day 0 h 0 min 0.002 sec +---------------------------------------------------------------- + Start calcultion of A subspace 2nd order energy +---------------------------------------------------------------- +Master rank allocated memory size: 6.84 MB +Master rank allocated memory size: 6.84 MB + + e2a(isym) + e2a( 1) = -0.122790477421288E-03 a.u. + e2a( 2) = -0.122790477421288E-03 a.u. + e2a( 17) = -0.416023623050901E-08 a.u. + e2a( 18) = -0.416023623050078E-08 a.u. + e2a( 19) = 0.000000000000000E+00 a.u. + e2a( 20) = 0.000000000000000E+00 a.u. + e2a = -0.245589275315038E-03 a.u. + sumc2,a = 0.913251375430316E-04 + + End calcultion of A subspace 2nd order energy +computational time = 0 day 0 h 0 min 0.024 sec +---------------------------------------------------------------- + +---------------------------------------------------------------- + Start calcultion of B subspace 2nd order energy +---------------------------------------------------------------- +Master rank allocated memory size: 6.83 MB + + e2b(isym) + e2b( 1) = -0.193888117085813E-02 a.u. + e2b = -0.193888117085813E-02 a.u. + sumc2,b = 0.985786712314787E-03 + + End calcuation of B subspace 2nd order energy +computational time = 0 day 0 h 0 min 0.002 sec +---------------------------------------------------------------- + +---------------------------------------------------------------- + Start calcultion of C subspace 2nd order energy +---------------------------------------------------------------- +Master rank allocated memory size: 6.96 MB +Master rank allocated memory size: 6.96 MB +Master rank allocated memory size: 6.96 MB + + e2c(isym) + e2c( 1) = -0.216146073941907E-02 a.u. + e2c( 2) = -0.216146073941907E-02 a.u. + e2c( 3) = -0.145590329622338E-01 a.u. + e2c( 4) = -0.145590329622338E-01 a.u. + e2c( 5) = 0.000000000000000E+00 a.u. + e2c( 6) = 0.000000000000000E+00 a.u. + e2c( 17) = -0.389804183918826E-02 a.u. + e2c( 18) = -0.389804183918826E-02 a.u. + e2c( 19) = -0.516273473342121E-05 a.u. + e2c( 20) = -0.516273473342123E-05 a.u. + e2c( 21) = 0.000000000000000E+00 a.u. + e2c( 22) = 0.000000000000000E+00 a.u. + e2c = -0.412473965511492E-01 a.u. + sumc2,c = 0.199560252162881E-01 + + End calcuation of C subspace 2nd order energy +computational time = 0 day 0 h 0 min 0.048 sec +---------------------------------------------------------------- + +---------------------------------------------------------------- + Start calcultion of D subspace 2nd order energy +---------------------------------------------------------------- +Master rank allocated memory size: 6.96 MB +Master rank allocated memory size: 6.96 MB +Master rank allocated memory size: 6.96 MB + + e2d(isym) + e2d( 1) = -0.768004077249966E-04 a.u. + e2d( 2) = -0.135698704092798E-03 a.u. + e2d( 3) = -0.135698704092798E-03 a.u. + e2d( 4) = -0.185078164951237E-09 a.u. + e2d( 5) = -0.185078164951237E-09 a.u. + e2d( 17) = -0.106040975572623E-01 a.u. + e2d( 18) = -0.471881063253958E-03 a.u. + e2d( 19) = -0.471881063253957E-03 a.u. + e2d( 20) = -0.914613144702824E-05 a.u. + e2d( 21) = -0.914613144702827E-05 a.u. + e2d = -0.119143501327312E-01 a.u. + sumc2,d = 0.348089780141900E-02 + + End calcuation of D subspace 2nd order energy +computational time = 0 day 0 h 0 min 0.052 sec +---------------------------------------------------------------- + +---------------------------------------------------------------- + Start calcultion of E subspace 2nd order energy +---------------------------------------------------------------- +Master rank allocated memory size: 6.96 MB + + e2e(isym) + e2e( 1) = -0.758974589606256E-03 a.u. + e2e( 2) = -0.758974589606256E-03 a.u. + e2e( 17) = -0.185654078136455E-04 a.u. + e2e( 18) = -0.185654078136455E-04 a.u. + e2e( 19) = -0.182083085446584E-05 a.u. + e2e( 20) = -0.182083085446584E-05 a.u. + e2e = -0.155872165654873E-02 a.u. + sumc2,e = 0.242669236934172E-03 + + End calcuation of E subspace 2nd order energy +computational time = 0 day 0 h 0 min 0.012 sec +---------------------------------------------------------------- + +---------------------------------------------------------------- + Start calcultion of F subspace 2nd order energy +---------------------------------------------------------------- +Master rank allocated memory size: 7.58 MB + + e2f(isym) + e2f( 1) = -0.264672360714977E-01 a.u. + e2f( 2) = -0.228278369282205E-02 a.u. + e2f( 3) = -0.228278369282205E-02 a.u. + e2f( 4) = -0.394619480412655E-02 a.u. + e2f( 5) = -0.394619480412655E-02 a.u. + e2f( 17) = -0.292137476022933E-02 a.u. + e2f( 18) = -0.659411848805818E-02 a.u. + e2f( 19) = -0.659411848805818E-02 a.u. + e2f( 20) = -0.411154532859414E-02 a.u. + e2f( 21) = -0.411154532859414E-02 a.u. + e2f = -0.632578954589289E-01 a.u. + sumc2,f = 0.205333184227050E-01 + + End calcuation of F subspace 2nd order energy +computational time = 0 day 0 h 0 min 0.049 sec +---------------------------------------------------------------- + +---------------------------------------------------------------- + Start calcultion of G subspace 2nd order energy +---------------------------------------------------------------- +Master rank allocated memory size: 7.58 MB + + e2g(isym) + e2g( 1) = -0.883360903523919E-02 a.u. + e2g( 2) = -0.883360903523919E-02 a.u. + e2g( 17) = -0.701378014124402E-02 a.u. + e2g( 18) = -0.701378014124402E-02 a.u. + e2g( 19) = -0.131662626802001E-01 a.u. + e2g( 20) = -0.131662626802001E-01 a.u. + e2g = -0.580273037133666E-01 a.u. + sumc2,g = 0.124874473158741E-01 + + End calcuation of G subspace 2nd order energy +computational time = 0 day 0 h 0 min 0.057 sec +---------------------------------------------------------------- + +---------------------------------------------------------------- + Start calcultion of H subspace 2nd order energy +---------------------------------------------------------------- +Master rank allocated memory size: 7.58 MB + + e2h = -0.430048042201530E-01 a.u. + sumc2,h = 0.470251789157384E-02 + + End calcuation of H subspace 2nd order energy +computational time = 0 day 0 h 0 min 0.051 sec +---------------------------------------------------------------- + + CASPT2 ENERGY FOR 33 STATE, selectroot = 1 + c^2 is 0.06247998773465211764 + weight of 0th wave function is 0.94119419804991566458 + Total second order energy is -0.22119494217905075195 a.u. + Total energy is -107.96269067114732820301 a.u. + + END OF RELATIVISTIC CASPT2 PROGRAM +MPI_Wtime : 0.546820E+00 + +================= Standard error ================= + +================= Calculation finished ================ +User Command : ../../../bin/dcaspt2 +Auto-created Command : /home/noda/develop/dirac_caspt2/bin/r4dcaspt2exe +Scratch directory : /home/noda/dcaspt2_scratch/active_2025-01-17_22-29-43_9uiemvm3 +Output file : /home/noda/develop/dirac_caspt2/test/dev/c32h_n2_small_nsec_dev/dirac_caspt2.out +Calculation started at : 2025-01-17 22:29:43 +Calculation finished at : 2025-01-17 22:29:44 +Elapsed time (sec) : 0.9727 sec +Elapsed time : 0 day 0 hour 0 min 0 sec 972 millisecond +dirac-caspt2 version (commit hash) : 67ca3c4703464df2eeca187f407b4f5643889521 +NORMAL END OF dirac-caspt2 CALCULATION diff --git a/test/dev/c32h_n2_small_nsec_dev/test_c32h_n2_small_nsec_dev.py b/test/dev/c32h_n2_small_nsec_dev/test_c32h_n2_small_nsec_dev.py new file mode 100644 index 00000000..230d2edb --- /dev/null +++ b/test/dev/c32h_n2_small_nsec_dev/test_c32h_n2_small_nsec_dev.py @@ -0,0 +1,30 @@ +import os +import shutil +import pytest +from module_testing import ( + run_test_dcaspt2, + get_caspt2_energy_from_output_file, +) + + +@pytest.mark.dev +def test_c32h_n2_small_nsec_dev(env_setup_caspt2) -> None: + + (test_path, ref_output_path, output_path, latest_passed_path, test_command) = env_setup_caspt2 + + # Get this files path and change directory to this path + os.chdir(test_path) # Change directory to the path of this file + print(test_path, "test start") # Debug output + + run_test_dcaspt2(test_command) + + ref_energy = get_caspt2_energy_from_output_file(ref_output_path) + test_energy = get_caspt2_energy_from_output_file(output_path) + + # Check whether the output of test run + # matches the reference to 7th decimal places. + assert test_energy == pytest.approx(ref_energy, abs=1e-10) + + # If it reaches this point, the result of assert is true. + # The latest passed output file is overwritten by the current output file if assert is True. + shutil.copy(output_path, latest_passed_path)