Skip to content

Latest commit

 

History

History
43 lines (37 loc) · 1.23 KB

README.md

File metadata and controls

43 lines (37 loc) · 1.23 KB

This is the implement of the paper, CASR: Generating Complicated Sequences with Autoregressive Self-Boost Refinement.

The overview logic is in utils.cascade_trainer.CascadeSeq2SeqTrainer.train_all

Quick Start

build and run the docker image with Dockerfile_sing for fine-tuning and Dockerfile_ada for adapter-tuning

set the MASTER_PORT and TASK environment variable:

export MASTER_PORT=12345
export TASK=webqsp (or mtop, kvret)

To train finetuning+sepenc+continue, run:

bash script/ft-t5-con/run_sing.sh

To train continue on Sudoku, run:

BART_SIZE=base bash script/trainer_sudoku.sh

To train CASR-Large, run:

bash script/trainer_large.sh

Baselines

bash baselines/inat/train.sh # INAT
bash baselines/levenshtein/train.sh # Levenshtein
bash baselines/bidirectional/train.sh # Bidirectional
python -m baselines.progressive.prepare_vocab && bash baselines/progressive/train.sh # Progressive

To try CASR on ChatGPT, run:

TASK=<your task> python empirical/chatgpt-test.py

Empirical Studies

Scripts of empirical studies are in this directory empirical

More Case Studies

More cases are in this directory cases