forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mean_squared_error.py
51 lines (38 loc) · 1.42 KB
/
mean_squared_error.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
Mean Squared Error (MSE) Loss Function
Description:
MSE measures the mean squared difference between true values and predicted values.
It serves as a measure of the model's accuracy in regression tasks.
Formula:
MSE = (1/n) * Σ(y_true - y_pred)^2
Source:
[Wikipedia - Mean squared error](https://en.wikipedia.org/wiki/Mean_squared_error)
"""
import numpy as np
def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Calculate the Mean Squared Error (MSE) between two arrays.
Parameters:
- y_true: The true values (ground truth).
- y_pred: The predicted values.
Returns:
- mse: The Mean Squared Error between y_true and y_pred.
Example usage:
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
>>> mean_squared_error(true_values, predicted_values)
0.028000000000000032
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
>>> mean_squared_error(true_labels, predicted_probs)
Traceback (most recent call last):
...
ValueError: Input arrays must have the same length.
"""
if len(y_true) != len(y_pred):
raise ValueError("Input arrays must have the same length.")
squared_errors = (y_true - y_pred) ** 2
return np.mean(squared_errors)
if __name__ == "__main__":
import doctest
doctest.testmod()