-
Notifications
You must be signed in to change notification settings - Fork 0
/
HandTrack.py
96 lines (84 loc) · 3.38 KB
/
HandTrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Import necessary libraries
import math
import cv2
import mediapipe as mp
import time
# Create a hand detector class
class handDetector():
def __init__(self, mode=False, maxHands=2, modelComplexity=1, detectionCon=0.5, trackCon=0.5):
self.mode = mode
self.maxHands = maxHands
self.modelComplex = modelComplexity
self.detectionCon = detectionCon
self.trackCon = trackCon
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.modelComplex, self.detectionCon, self.trackCon)
self.mpDraw = mp.solutions.drawing_utils
self.tipIds = [4, 8, 12, 16, 20]
# Function to find and draw hands in the image
def findHands(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
if self.results.multi_hand_landmarks:
for handLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS)
return img
# Function to calculate the distance between two points
def findDistance(self, p1, p2, img, draw=True, r=15, t=3):
x1, y1 = self.lmList[p1][1:]
x2, y2 = self.lmList[p2][1:]
cx, cy = (x1 + x2) // 2, (y1 + y2) // 2
if draw:
cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), t)
cv2.circle(img, (x1, y1), r, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), r, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (cx, cy), r, (0, 0, 255), cv2.FILLED)
length = math.hypot(x2 - x1, y2 - y1)
return length, img, [x1, y1, x2, y2, cx, cy]
# Function to find hand landmarks and their positions
def findPosition(self, img, handNo=0, draw=True):
self.lmlist = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[handNo]
for id, lm in enumerate(myHand.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
self.lmlist.append([id, cx, cy])
return self.lmlist
# Function to detect finger positions (up or down)
def fingersUp(self):
fingers = []
if self.lmlist[self.tipIds[0]][2] < self.lmlist[self.tipIds[0] - 1][1]:
fingers.append(1)
else:
fingers.append(0)
for id in range(1, 5):
if self.lmlist[self.tipIds[id]][2] < self.lmlist[self.tipIds[id] - 2][2]:
fingers.append(1)
else:
fingers.append(0)
return fingers
# Main function
def main():
pTime = 0
cTime = 0
cap = cv2.VideoCapture(0)
detector = handDetector()
while True:
success, img = cap.read()
if not success:
break
img = detector.findHands(img)
lmlist = detector.findPosition(img)
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
# Display frames per second (FPS) on the image
cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 3, (255, 0, 255), 3)
cv2.imshow("Image", img)
cv2.waitKey(1)
if __name__ == "__main__":
main()
# Close OpenCV windows
cv2.destroyAllWindows()