forked from nothings/stb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stb_dxt.h
753 lines (645 loc) · 24.2 KB
/
stb_dxt.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
// stb_dxt.h - v1.10 - DXT1/DXT5 compressor - public domain
// original by fabian "ryg" giesen - ported to C by stb
// use '#define STB_DXT_IMPLEMENTATION' before including to create the implementation
//
// USAGE:
// call stb_compress_dxt_block() for every block (you must pad)
// source should be a 4x4 block of RGBA data in row-major order;
// Alpha channel is not stored if you specify alpha=0 (but you
// must supply some constant alpha in the alpha channel).
// You can turn on dithering and "high quality" using mode.
//
// version history:
// v1.10 - (i.c) various small quality improvements
// v1.09 - (stb) update documentation re: surprising alpha channel requirement
// v1.08 - (stb) fix bug in dxt-with-alpha block
// v1.07 - (stb) bc4; allow not using libc; add STB_DXT_STATIC
// v1.06 - (stb) fix to known-broken 1.05
// v1.05 - (stb) support bc5/3dc (Arvids Kokins), use extern "C" in C++ (Pavel Krajcevski)
// v1.04 - (ryg) default to no rounding bias for lerped colors (as per S3TC/DX10 spec);
// single color match fix (allow for inexact color interpolation);
// optimal DXT5 index finder; "high quality" mode that runs multiple refinement steps.
// v1.03 - (stb) endianness support
// v1.02 - (stb) fix alpha encoding bug
// v1.01 - (stb) fix bug converting to RGB that messed up quality, thanks ryg & cbloom
// v1.00 - (stb) first release
//
// contributors:
// Rich Geldreich (more accurate index selection)
// Kevin Schmidt (#defines for "freestanding" compilation)
// github:ppiastucki (BC4 support)
// Ignacio Castano - improve DXT endpoint quantization
//
// LICENSE
//
// See end of file for license information.
#ifndef STB_INCLUDE_STB_DXT_H
#define STB_INCLUDE_STB_DXT_H
#ifdef __cplusplus
extern "C" {
#endif
#ifdef STB_DXT_STATIC
#define STBDDEF static
#else
#define STBDDEF extern
#endif
// compression mode (bitflags)
#define STB_DXT_NORMAL 0
#define STB_DXT_DITHER 1 // use dithering. dubious win. never use for normal maps and the like!
#define STB_DXT_HIGHQUAL 2 // high quality mode, does two refinement steps instead of 1. ~30-40% slower.
STBDDEF void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src_rgba_four_bytes_per_pixel, int alpha, int mode);
STBDDEF void stb_compress_bc4_block(unsigned char *dest, const unsigned char *src_r_one_byte_per_pixel);
STBDDEF void stb_compress_bc5_block(unsigned char *dest, const unsigned char *src_rg_two_byte_per_pixel);
#define STB_COMPRESS_DXT_BLOCK
#ifdef __cplusplus
}
#endif
#endif // STB_INCLUDE_STB_DXT_H
#ifdef STB_DXT_IMPLEMENTATION
// configuration options for DXT encoder. set them in the project/makefile or just define
// them at the top.
// STB_DXT_USE_ROUNDING_BIAS
// use a rounding bias during color interpolation. this is closer to what "ideal"
// interpolation would do but doesn't match the S3TC/DX10 spec. old versions (pre-1.03)
// implicitly had this turned on.
//
// in case you're targeting a specific type of hardware (e.g. console programmers):
// NVidia and Intel GPUs (as of 2010) as well as DX9 ref use DXT decoders that are closer
// to STB_DXT_USE_ROUNDING_BIAS. AMD/ATI, S3 and DX10 ref are closer to rounding with no bias.
// you also see "(a*5 + b*3) / 8" on some old GPU designs.
// #define STB_DXT_USE_ROUNDING_BIAS
#include <stdlib.h>
#if !defined(STBD_ABS) || !defined(STBI_FABS)
#include <math.h>
#endif
#ifndef STBD_ABS
#define STBD_ABS(i) abs(i)
#endif
#ifndef STBD_FABS
#define STBD_FABS(x) fabs(x)
#endif
#ifndef STBD_MEMSET
#include <string.h>
#define STBD_MEMSET memset
#endif
static unsigned char stb__Expand5[32];
static unsigned char stb__Expand6[64];
static unsigned char stb__OMatch5[256][2];
static unsigned char stb__OMatch6[256][2];
static unsigned char stb__QuantRBTab[256+16];
static unsigned char stb__QuantGTab[256+16];
static int stb__Mul8Bit(int a, int b)
{
int t = a*b + 128;
return (t + (t >> 8)) >> 8;
}
static void stb__From16Bit(unsigned char *out, unsigned short v)
{
int rv = (v & 0xf800) >> 11;
int gv = (v & 0x07e0) >> 5;
int bv = (v & 0x001f) >> 0;
out[0] = stb__Expand5[rv];
out[1] = stb__Expand6[gv];
out[2] = stb__Expand5[bv];
out[3] = 0;
}
static unsigned short stb__As16Bit(int r, int g, int b)
{
return (unsigned short)((stb__Mul8Bit(r,31) << 11) + (stb__Mul8Bit(g,63) << 5) + stb__Mul8Bit(b,31));
}
// linear interpolation at 1/3 point between a and b, using desired rounding type
static int stb__Lerp13(int a, int b)
{
#ifdef STB_DXT_USE_ROUNDING_BIAS
// with rounding bias
return a + stb__Mul8Bit(b-a, 0x55);
#else
// without rounding bias
// replace "/ 3" by "* 0xaaab) >> 17" if your compiler sucks or you really need every ounce of speed.
return (2*a + b) / 3;
#endif
}
// lerp RGB color
static void stb__Lerp13RGB(unsigned char *out, unsigned char *p1, unsigned char *p2)
{
out[0] = (unsigned char)stb__Lerp13(p1[0], p2[0]);
out[1] = (unsigned char)stb__Lerp13(p1[1], p2[1]);
out[2] = (unsigned char)stb__Lerp13(p1[2], p2[2]);
}
/****************************************************************************/
// compute table to reproduce constant colors as accurately as possible
static void stb__PrepareOptTable(unsigned char *Table,const unsigned char *expand,int size)
{
int i,mn,mx;
for (i=0;i<256;i++) {
int bestErr = 256;
for (mn=0;mn<size;mn++) {
for (mx=0;mx<size;mx++) {
int mine = expand[mn];
int maxe = expand[mx];
int err = STBD_ABS(stb__Lerp13(maxe, mine) - i);
// DX10 spec says that interpolation must be within 3% of "correct" result,
// add this as error term. (normally we'd expect a random distribution of
// +-1.5% error, but nowhere in the spec does it say that the error has to be
// unbiased - better safe than sorry).
err += STBD_ABS(maxe - mine) * 3 / 100;
if(err < bestErr)
{
Table[i*2+0] = (unsigned char)mx;
Table[i*2+1] = (unsigned char)mn;
bestErr = err;
}
}
}
}
}
static void stb__EvalColors(unsigned char *color,unsigned short c0,unsigned short c1)
{
stb__From16Bit(color+ 0, c0);
stb__From16Bit(color+ 4, c1);
stb__Lerp13RGB(color+ 8, color+0, color+4);
stb__Lerp13RGB(color+12, color+4, color+0);
}
// Block dithering function. Simply dithers a block to 565 RGB.
// (Floyd-Steinberg)
static void stb__DitherBlock(unsigned char *dest, unsigned char *block)
{
int err[8],*ep1 = err,*ep2 = err+4, *et;
int ch,y;
// process channels separately
for (ch=0; ch<3; ++ch) {
unsigned char *bp = block+ch, *dp = dest+ch;
unsigned char *quant = (ch == 1) ? stb__QuantGTab+8 : stb__QuantRBTab+8;
STBD_MEMSET(err, 0, sizeof(err));
for(y=0; y<4; ++y) {
dp[ 0] = quant[bp[ 0] + ((3*ep2[1] + 5*ep2[0]) >> 4)];
ep1[0] = bp[ 0] - dp[ 0];
dp[ 4] = quant[bp[ 4] + ((7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]) >> 4)];
ep1[1] = bp[ 4] - dp[ 4];
dp[ 8] = quant[bp[ 8] + ((7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]) >> 4)];
ep1[2] = bp[ 8] - dp[ 8];
dp[12] = quant[bp[12] + ((7*ep1[2] + 5*ep2[3] + ep2[2]) >> 4)];
ep1[3] = bp[12] - dp[12];
bp += 16;
dp += 16;
et = ep1, ep1 = ep2, ep2 = et; // swap
}
}
}
// The color matching function
static unsigned int stb__MatchColorsBlock(unsigned char *block, unsigned char *color,int dither)
{
unsigned int mask = 0;
int dirr = color[0*4+0] - color[1*4+0];
int dirg = color[0*4+1] - color[1*4+1];
int dirb = color[0*4+2] - color[1*4+2];
int dots[16];
int stops[4];
int i;
int c0Point, halfPoint, c3Point;
for(i=0;i<16;i++)
dots[i] = block[i*4+0]*dirr + block[i*4+1]*dirg + block[i*4+2]*dirb;
for(i=0;i<4;i++)
stops[i] = color[i*4+0]*dirr + color[i*4+1]*dirg + color[i*4+2]*dirb;
// think of the colors as arranged on a line; project point onto that line, then choose
// next color out of available ones. we compute the crossover points for "best color in top
// half"/"best in bottom half" and then the same inside that subinterval.
//
// relying on this 1d approximation isn't always optimal in terms of euclidean distance,
// but it's very close and a lot faster.
// http://cbloomrants.blogspot.com/2008/12/12-08-08-dxtc-summary.html
c0Point = (stops[1] + stops[3]);
halfPoint = (stops[3] + stops[2]);
c3Point = (stops[2] + stops[0]);
if(!dither) {
// the version without dithering is straightforward
for (i=15;i>=0;i--) {
int dot = dots[i]*2;
mask <<= 2;
if(dot < halfPoint)
mask |= (dot < c0Point) ? 1 : 3;
else
mask |= (dot < c3Point) ? 2 : 0;
}
} else {
// with floyd-steinberg dithering
int err[8],*ep1 = err,*ep2 = err+4;
int *dp = dots, y;
c0Point <<= 3;
halfPoint <<= 3;
c3Point <<= 3;
for(i=0;i<8;i++)
err[i] = 0;
for(y=0;y<4;y++)
{
int dot,lmask,step;
dot = (dp[0] << 4) + (3*ep2[1] + 5*ep2[0]);
if(dot < halfPoint)
step = (dot < c0Point) ? 1 : 3;
else
step = (dot < c3Point) ? 2 : 0;
ep1[0] = dp[0] - stops[step];
lmask = step;
dot = (dp[1] << 4) + (7*ep1[0] + 3*ep2[2] + 5*ep2[1] + ep2[0]);
if(dot < halfPoint)
step = (dot < c0Point) ? 1 : 3;
else
step = (dot < c3Point) ? 2 : 0;
ep1[1] = dp[1] - stops[step];
lmask |= step<<2;
dot = (dp[2] << 4) + (7*ep1[1] + 3*ep2[3] + 5*ep2[2] + ep2[1]);
if(dot < halfPoint)
step = (dot < c0Point) ? 1 : 3;
else
step = (dot < c3Point) ? 2 : 0;
ep1[2] = dp[2] - stops[step];
lmask |= step<<4;
dot = (dp[3] << 4) + (7*ep1[2] + 5*ep2[3] + ep2[2]);
if(dot < halfPoint)
step = (dot < c0Point) ? 1 : 3;
else
step = (dot < c3Point) ? 2 : 0;
ep1[3] = dp[3] - stops[step];
lmask |= step<<6;
dp += 4;
mask |= lmask << (y*8);
{ int *et = ep1; ep1 = ep2; ep2 = et; } // swap
}
}
return mask;
}
// The color optimization function. (Clever code, part 1)
static void stb__OptimizeColorsBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16)
{
int mind = 0x7fffffff,maxd = -0x7fffffff;
unsigned char *minp, *maxp;
double magn;
int v_r,v_g,v_b;
static const int nIterPower = 4;
float covf[6],vfr,vfg,vfb;
// determine color distribution
int cov[6];
int mu[3],min[3],max[3];
int ch,i,iter;
for(ch=0;ch<3;ch++)
{
const unsigned char *bp = ((const unsigned char *) block) + ch;
int muv,minv,maxv;
muv = minv = maxv = bp[0];
for(i=4;i<64;i+=4)
{
muv += bp[i];
if (bp[i] < minv) minv = bp[i];
else if (bp[i] > maxv) maxv = bp[i];
}
mu[ch] = (muv + 8) >> 4;
min[ch] = minv;
max[ch] = maxv;
}
// determine covariance matrix
for (i=0;i<6;i++)
cov[i] = 0;
for (i=0;i<16;i++)
{
int r = block[i*4+0] - mu[0];
int g = block[i*4+1] - mu[1];
int b = block[i*4+2] - mu[2];
cov[0] += r*r;
cov[1] += r*g;
cov[2] += r*b;
cov[3] += g*g;
cov[4] += g*b;
cov[5] += b*b;
}
// convert covariance matrix to float, find principal axis via power iter
for(i=0;i<6;i++)
covf[i] = cov[i] / 255.0f;
vfr = (float) (max[0] - min[0]);
vfg = (float) (max[1] - min[1]);
vfb = (float) (max[2] - min[2]);
for(iter=0;iter<nIterPower;iter++)
{
float r = vfr*covf[0] + vfg*covf[1] + vfb*covf[2];
float g = vfr*covf[1] + vfg*covf[3] + vfb*covf[4];
float b = vfr*covf[2] + vfg*covf[4] + vfb*covf[5];
vfr = r;
vfg = g;
vfb = b;
}
magn = STBD_FABS(vfr);
if (STBD_FABS(vfg) > magn) magn = STBD_FABS(vfg);
if (STBD_FABS(vfb) > magn) magn = STBD_FABS(vfb);
if(magn < 4.0f) { // too small, default to luminance
v_r = 299; // JPEG YCbCr luma coefs, scaled by 1000.
v_g = 587;
v_b = 114;
} else {
magn = 512.0 / magn;
v_r = (int) (vfr * magn);
v_g = (int) (vfg * magn);
v_b = (int) (vfb * magn);
}
// Pick colors at extreme points
for(i=0;i<16;i++)
{
int dot = block[i*4+0]*v_r + block[i*4+1]*v_g + block[i*4+2]*v_b;
if (dot < mind) {
mind = dot;
minp = block+i*4;
}
if (dot > maxd) {
maxd = dot;
maxp = block+i*4;
}
}
*pmax16 = stb__As16Bit(maxp[0],maxp[1],maxp[2]);
*pmin16 = stb__As16Bit(minp[0],minp[1],minp[2]);
}
static const float midpoints5[32] = {
0.015686f, 0.047059f, 0.078431f, 0.111765f, 0.145098f, 0.176471f, 0.207843f, 0.241176f, 0.274510f, 0.305882f, 0.337255f, 0.370588f, 0.403922f, 0.435294f, 0.466667f, 0.5f,
0.533333f, 0.564706f, 0.596078f, 0.629412f, 0.662745f, 0.694118f, 0.725490f, 0.758824f, 0.792157f, 0.823529f, 0.854902f, 0.888235f, 0.921569f, 0.952941f, 0.984314f, 1.0f
};
static const float midpoints6[64] = {
0.007843f, 0.023529f, 0.039216f, 0.054902f, 0.070588f, 0.086275f, 0.101961f, 0.117647f, 0.133333f, 0.149020f, 0.164706f, 0.180392f, 0.196078f, 0.211765f, 0.227451f, 0.245098f,
0.262745f, 0.278431f, 0.294118f, 0.309804f, 0.325490f, 0.341176f, 0.356863f, 0.372549f, 0.388235f, 0.403922f, 0.419608f, 0.435294f, 0.450980f, 0.466667f, 0.482353f, 0.500000f,
0.517647f, 0.533333f, 0.549020f, 0.564706f, 0.580392f, 0.596078f, 0.611765f, 0.627451f, 0.643137f, 0.658824f, 0.674510f, 0.690196f, 0.705882f, 0.721569f, 0.737255f, 0.754902f,
0.772549f, 0.788235f, 0.803922f, 0.819608f, 0.835294f, 0.850980f, 0.866667f, 0.882353f, 0.898039f, 0.913725f, 0.929412f, 0.945098f, 0.960784f, 0.976471f, 0.992157f, 1.0f
};
static unsigned short stb__Quantize5(float x)
{
unsigned short q;
x = x < 0 ? 0 : x > 1 ? 1 : x; // saturate
q = (unsigned short)(x * 31);
q += (x > midpoints5[q]);
return q;
}
static unsigned short stb__Quantize6(float x)
{
unsigned short q;
x = x < 0 ? 0 : x > 1 ? 1 : x; // saturate
q = (unsigned short)(x * 63);
q += (x > midpoints6[q]);
return q;
}
// The refinement function. (Clever code, part 2)
// Tries to optimize colors to suit block contents better.
// (By solving a least squares system via normal equations+Cramer's rule)
static int stb__RefineBlock(unsigned char *block, unsigned short *pmax16, unsigned short *pmin16, unsigned int mask)
{
static const int w1Tab[4] = { 3,0,2,1 };
static const int prods[4] = { 0x090000,0x000900,0x040102,0x010402 };
// ^some magic to save a lot of multiplies in the accumulating loop...
// (precomputed products of weights for least squares system, accumulated inside one 32-bit register)
float f;
unsigned short oldMin, oldMax, min16, max16;
int i, akku = 0, xx,xy,yy;
int At1_r,At1_g,At1_b;
int At2_r,At2_g,At2_b;
unsigned int cm = mask;
oldMin = *pmin16;
oldMax = *pmax16;
if((mask ^ (mask<<2)) < 4) // all pixels have the same index?
{
// yes, linear system would be singular; solve using optimal
// single-color match on average color
int r = 8, g = 8, b = 8;
for (i=0;i<16;++i) {
r += block[i*4+0];
g += block[i*4+1];
b += block[i*4+2];
}
r >>= 4; g >>= 4; b >>= 4;
max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0];
min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1];
} else {
At1_r = At1_g = At1_b = 0;
At2_r = At2_g = At2_b = 0;
for (i=0;i<16;++i,cm>>=2) {
int step = cm&3;
int w1 = w1Tab[step];
int r = block[i*4+0];
int g = block[i*4+1];
int b = block[i*4+2];
akku += prods[step];
At1_r += w1*r;
At1_g += w1*g;
At1_b += w1*b;
At2_r += r;
At2_g += g;
At2_b += b;
}
At2_r = 3*At2_r - At1_r;
At2_g = 3*At2_g - At1_g;
At2_b = 3*At2_b - At1_b;
// extract solutions and decide solvability
xx = akku >> 16;
yy = (akku >> 8) & 0xff;
xy = (akku >> 0) & 0xff;
f = 3.0f / 255.0f / (xx*yy - xy*xy);
max16 = stb__Quantize5((At1_r*yy - At2_r * xy) * f) << 11;
max16 |= stb__Quantize6((At1_g*yy - At2_g * xy) * f) << 5;
max16 |= stb__Quantize5((At1_b*yy - At2_b * xy) * f) << 0;
min16 = stb__Quantize5((At2_r*xx - At1_r * xy) * f) << 11;
min16 |= stb__Quantize6((At2_g*xx - At1_g * xy) * f) << 5;
min16 |= stb__Quantize5((At2_b*xx - At1_b * xy) * f) << 0;
}
*pmin16 = min16;
*pmax16 = max16;
return oldMin != min16 || oldMax != max16;
}
// Color block compression
static void stb__CompressColorBlock(unsigned char *dest, unsigned char *block, int mode)
{
unsigned int mask;
int i;
int dither;
int refinecount;
unsigned short max16, min16;
unsigned char dblock[16*4],color[4*4];
dither = mode & STB_DXT_DITHER;
refinecount = (mode & STB_DXT_HIGHQUAL) ? 2 : 1;
// check if block is constant
for (i=1;i<16;i++)
if (((unsigned int *) block)[i] != ((unsigned int *) block)[0])
break;
if(i == 16) { // constant color
int r = block[0], g = block[1], b = block[2];
mask = 0xaaaaaaaa;
max16 = (stb__OMatch5[r][0]<<11) | (stb__OMatch6[g][0]<<5) | stb__OMatch5[b][0];
min16 = (stb__OMatch5[r][1]<<11) | (stb__OMatch6[g][1]<<5) | stb__OMatch5[b][1];
} else {
// first step: compute dithered version for PCA if desired
if(dither)
stb__DitherBlock(dblock,block);
// second step: pca+map along principal axis
stb__OptimizeColorsBlock(dither ? dblock : block,&max16,&min16);
if (max16 != min16) {
stb__EvalColors(color,max16,min16);
mask = stb__MatchColorsBlock(block,color,dither);
} else
mask = 0;
// third step: refine (multiple times if requested)
for (i=0;i<refinecount;i++) {
unsigned int lastmask = mask;
if (stb__RefineBlock(dither ? dblock : block,&max16,&min16,mask)) {
if (max16 != min16) {
stb__EvalColors(color,max16,min16);
mask = stb__MatchColorsBlock(block,color,dither);
} else {
mask = 0;
break;
}
}
if(mask == lastmask)
break;
}
}
// write the color block
if(max16 < min16)
{
unsigned short t = min16;
min16 = max16;
max16 = t;
mask ^= 0x55555555;
}
dest[0] = (unsigned char) (max16);
dest[1] = (unsigned char) (max16 >> 8);
dest[2] = (unsigned char) (min16);
dest[3] = (unsigned char) (min16 >> 8);
dest[4] = (unsigned char) (mask);
dest[5] = (unsigned char) (mask >> 8);
dest[6] = (unsigned char) (mask >> 16);
dest[7] = (unsigned char) (mask >> 24);
}
// Alpha block compression (this is easy for a change)
static void stb__CompressAlphaBlock(unsigned char *dest,unsigned char *src, int stride)
{
int i,dist,bias,dist4,dist2,bits,mask;
// find min/max color
int mn,mx;
mn = mx = src[0];
for (i=1;i<16;i++)
{
if (src[i*stride] < mn) mn = src[i*stride];
else if (src[i*stride] > mx) mx = src[i*stride];
}
// encode them
dest[0] = (unsigned char)mx;
dest[1] = (unsigned char)mn;
dest += 2;
// determine bias and emit color indices
// given the choice of mx/mn, these indices are optimal:
// http://fgiesen.wordpress.com/2009/12/15/dxt5-alpha-block-index-determination/
dist = mx-mn;
dist4 = dist*4;
dist2 = dist*2;
bias = (dist < 8) ? (dist - 1) : (dist/2 + 2);
bias -= mn * 7;
bits = 0,mask=0;
for (i=0;i<16;i++) {
int a = src[i*stride]*7 + bias;
int ind,t;
// select index. this is a "linear scale" lerp factor between 0 (val=min) and 7 (val=max).
t = (a >= dist4) ? -1 : 0; ind = t & 4; a -= dist4 & t;
t = (a >= dist2) ? -1 : 0; ind += t & 2; a -= dist2 & t;
ind += (a >= dist);
// turn linear scale into DXT index (0/1 are extremal pts)
ind = -ind & 7;
ind ^= (2 > ind);
// write index
mask |= ind << bits;
if((bits += 3) >= 8) {
*dest++ = (unsigned char)mask;
mask >>= 8;
bits -= 8;
}
}
}
static void stb__InitDXT()
{
int i;
for(i=0;i<32;i++)
stb__Expand5[i] = (unsigned char)((i<<3)|(i>>2));
for(i=0;i<64;i++)
stb__Expand6[i] = (unsigned char)((i<<2)|(i>>4));
for(i=0;i<256+16;i++)
{
int v = i-8 < 0 ? 0 : i-8 > 255 ? 255 : i-8;
stb__QuantRBTab[i] = stb__Expand5[stb__Mul8Bit(v,31)];
stb__QuantGTab[i] = stb__Expand6[stb__Mul8Bit(v,63)];
}
stb__PrepareOptTable(&stb__OMatch5[0][0],stb__Expand5,32);
stb__PrepareOptTable(&stb__OMatch6[0][0],stb__Expand6,64);
}
void stb_compress_dxt_block(unsigned char *dest, const unsigned char *src, int alpha, int mode)
{
unsigned char data[16][4];
static int init=1;
if (init) {
stb__InitDXT();
init=0;
}
if (alpha) {
int i;
stb__CompressAlphaBlock(dest,(unsigned char*) src+3, 4);
dest += 8;
// make a new copy of the data in which alpha is opaque,
// because code uses a fast test for color constancy
memcpy(data, src, 4*16);
for (i=0; i < 16; ++i)
data[i][3] = 255;
src = &data[0][0];
}
stb__CompressColorBlock(dest,(unsigned char*) src,mode);
}
void stb_compress_bc4_block(unsigned char *dest, const unsigned char *src)
{
stb__CompressAlphaBlock(dest,(unsigned char*) src, 1);
}
void stb_compress_bc5_block(unsigned char *dest, const unsigned char *src)
{
stb__CompressAlphaBlock(dest,(unsigned char*) src,2);
stb__CompressAlphaBlock(dest + 8,(unsigned char*) src+1,2);
}
#endif // STB_DXT_IMPLEMENTATION
/*
------------------------------------------------------------------------------
This software is available under 2 licenses -- choose whichever you prefer.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT License
Copyright (c) 2017 Sean Barrett
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/