-
Notifications
You must be signed in to change notification settings - Fork 677
/
Copy pathNLP Doc2Vec
159 lines (129 loc) · 4.91 KB
/
NLP Doc2Vec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import matplotlib.pyplot as plt
from gensim import corpora
documents = ["Human machine interface for lab abc computer applications",
"A survey of user opinion of computer system response time",
"The EPS user interface management system",
"System and human system engineering testing of EPS",
"Relation of user perceived response time to error measurement",
"The generation of random binary unordered trees",
"The intersection graph of paths in trees",
"Graph minors IV Widths of trees and well quasi ordering",
"Graph minors A survey"]
# remove common words and tokenize
stoplist = set('for a of the and to in'.split())
texts = [[word for word in document.lower().split() if word not in stoplist]
for document in documents]
texts
# remove words that appear only once
from collections import defaultdict
frequency = defaultdict(int)
for text in texts:
for token in text:
frequency[token] += 1
frequency
texts = [[token for token in text if frequency[token] > 1]
for text in texts]
from pprint import pprint # pretty-printer
pprint(texts)
dictionary = corpora.Dictionary(texts)
dictionary.save('/tmp/deerwester.dict')
print(dictionary.token2id)
# VETOR DA FRASE
new_doc = "Human computer interaction"
new_vec = dictionary.doc2bow(new_doc.lower().split())
print(new_vec)
## VETOR DAS FRASES
corpus = [dictionary.doc2bow(text) for text in texts]
corpora.MmCorpus.serialize('/tmp/deerwester.mm', corpus) # store to disk, for later use
print(corpus)
from gensim import corpora, models, similarities
tfidf = models.TfidfModel(corpus) # step 1 -- initialize a model
### COORDENADA DA FRASE
frase=tfidf[new_vec]
print(frase)
corpus_tfidf = tfidf[corpus]
for doc in corpus_tfidf:
print(doc)
lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=2) # initialize an LSI transformation
corpus_lsi = lsi[corpus_tfidf] # create a double wrapper over the original corpus: bow->tfidf->fold-in-lsi
lsi.print_topics(1)
## COORDENADAS DOS TEXTOS
todas=[]
for doc in corpus_lsi: # both bow->tfidf and tfidf->lsi transformations are actually executed here, on the fly
todas.append(doc)
todas
from gensim import corpora, models, similarities
dictionary = corpora.Dictionary.load('/tmp/deerwester.dict')
corpus = corpora.MmCorpus('/tmp/deerwester.mm') # comes from the first tutorial, "From strings to vectors"
print(corpus)
lsi = models.LsiModel(corpus, id2word=dictionary, num_topics=2)
doc = "Human computer interaction"
vec_bow = dictionary.doc2bow(doc.lower().split())
vec_lsi = lsi[vec_bow] # convert the query to LSI space
print(vec_lsi)
p=[]
for i in range(0,len(documents)):
doc1 = documents[i]
vec_bow2 = dictionary.doc2bow(doc1.lower().split())
vec_lsi2 = lsi[vec_bow2] # convert the query to LSI space
p.append(vec_lsi2)
p
index = similarities.MatrixSimilarity(lsi[corpus]) # transform corpus to LSI space and index it
index.save('/tmp/deerwester.index')
index = similarities.MatrixSimilarity.load('/tmp/deerwester.index')
sims = index[vec_lsi] # perform a similarity query against the corpus
print(list(enumerate(sims))) # print (document_number, document_similarity) 2-tuples
# print sorted (document number, similarity score) 2-tuples
print('Human computer interaction\n')
for i in range(0,len(sims)):
print('Similarity:', sims[i],documents[i])
#################
import gensim
import numpy as np
import matplotlib.colors as colors
import matplotlib.cm as cmx
import matplotlib as mpl
matrix1 = gensim.matutils.corpus2dense(p, num_terms=2)
matrix3=matrix1.T
matrix3[0]
ss=[]
for i in range(0,9):
ss.append(np.insert(matrix3[i],0,[0,0]))
matrix4=ss
matrix4
matrix2 = gensim.matutils.corpus2dense([vec_lsi], num_terms=2)
matrix2=np.insert(matrix2,0,[0,0])
matrix2
DATA=np.insert(matrix4,0,matrix2)
DATA=DATA.reshape(10,4)
DATA
#### AVALIAR DAQUI
names=np.array(documents)
names=np.insert(names,0,new_doc)
new_doc
cmap = plt.cm.jet
cNorm = colors.Normalize(vmin=np.min(DATA[:,3])+.2, vmax=np.max(DATA[:,3]))
scalarMap = cmx.ScalarMappable(norm=cNorm,cmap=cmap)
len(DATA[:,1])
plt.subplots()
plt.figure(figsize=(9,6))
plt.scatter(matrix1[0],matrix1[1],s=40)
plt.scatter(matrix2[2],matrix2[3],color='r',s=80)
for idx in range(0,len(DATA[:,1])):
colorVal = scalarMap.to_rgba(DATA[idx,3])
plt.arrow(DATA[idx,0], #x1
DATA[idx,1], # y1
DATA[idx,2], # x2 - x1
DATA[idx,3], # y2 - y1
color=colorVal,head_width=0.002, head_length=0.001)
for i,names in enumerate (names):
plt.annotate(names, (DATA[i][2],DATA[i][3]),va='top')
plt.title("PHRASE SIMILARITY - DOC2VEC with GENSIM library")
plt.xlim(-.1,9)
plt.ylim(-1.8,1)
plt.show()
print('Human computer interaction\n')
for i in range(0,len(sims)):
print('Cosine Similarity:', sims[i],documents[i])