-
Notifications
You must be signed in to change notification settings - Fork 677
/
Copy pathRESNET 2 Branches
116 lines (92 loc) · 3.46 KB
/
RESNET 2 Branches
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import keras
import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation,Merge,Lambda,GlobalAveragePooling1D,GlobalAveragePooling2D,UpSampling1D,UpSampling2D
from keras.optimizers import SGD
from scipy.interpolate import spline
from keras.callbacks import LearningRateScheduler
from sklearn.preprocessing import StandardScaler
from sklearn import preprocessing
from keras.layers.normalization import BatchNormalization
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
from sklearn import datasets
import keras.backend as K
from keras.layers.core import Reshape
from keras.callbacks import ModelCheckpoint
from sklearn.utils import shuffle
iris = datasets.load_iris()
learning_rate = 0.009
decay_rate = 5e-6
momentum = 0.9
epochs=50
scaler = MinMaxScaler(feature_range=(0, 1))
X_train2=scaler.fit_transform(iris.data[:,0:4])
Y_train = np.array(iris.target).reshape((150,1))
data=pd.DataFrame(np.concatenate((X_train2,Y_train),axis=1))
data2=shuffle(data)
X_train2=np.array(data2.ix[:,0:3])
Y_train=np.array(pd.get_dummies(data2.ix[:,4]))
sgd = SGD(lr=learning_rate,momentum=momentum, decay=decay_rate, nesterov=False)
model_left=Sequential()
model_left.add(Dense(5, input_dim=4, init='glorot_uniform'))
model_left.add(BatchNormalization(mode=2))
model_left.add(Activation('relu'))
model_left.add(Dense(5))
model_left.add(BatchNormalization(mode=2))
model_left.add(Activation('relu'))
model_left.add(Dense(3))
model_left.add(Activation('sigmoid'))
model_left.add(Dense(4))
for i in range(0,6):
print(i,model_left.layers[i].name)
model_right=Sequential()
part=5
model_left.layers[part].name
get_0_layer_output = K.function([model_left.layers[0].input, K.learning_phase()],[model_left.layers[part].output])
get_0_layer_output([X_train2, 0])[0][0]
pred=[np.argmax(get_0_layer_output([X_train2, 0])[0][i]) for i in range(0,len(X_train2))]
loss=iris.target-pred
loss=loss.astype('float32')
model_right.add(Lambda(lambda x: x-np.mean(loss),input_shape=(4,),output_shape=(4,)))
model_right.add(BatchNormalization(mode=2))
model2=Sequential()
model2.add(Merge([model_left,model_right],mode = 'concat'))
model2.add(Activation('relu'))
model2.add(Reshape((8,)))
model2.add(Dense(5))
model2.add(BatchNormalization(mode=2))
model2.add(Activation('relu'))
model2.add(Dense(3))
model2.add(Activation('relu'))
model2.add(Dense(4))
for i in range(0,6):
print(i,model2.layers[i].name)
model_right2=Sequential()
part=4
model2.layers[part].name
model_right2.add(Lambda(lambda x: x-np.mean(loss),input_shape=(4,),output_shape=(4,)))
model_right2.add(BatchNormalization(mode=2))
model22=Sequential()
model22.add(Merge([model2,model_right2],mode = 'concat'))
model22.add(Activation('relu'))
model22.add(Reshape((8,)))
model22.add(Dense(5))
model22.add(BatchNormalization(mode=2))
model22.add(Activation('relu'))
model22.add(Dense(3))
model22.add(Activation('sigmoid'))
model22.compile(loss = 'binary_crossentropy', optimizer = sgd, metrics = ['accuracy'])
model22.summary()
model22.fit([X_train2,X_train2,X_train2], Y_train,
batch_size = 30, nb_epoch = 1000, verbose = 1,validation_split=0.9)
res22 = model22.predict_classes([X_train2,X_train2,X_train2],batch_size = 30)
acc22=((res22-data2.ix[:,4])==0).sum()/len(res22)
acc22
import pydot
import graphviz
import pydot_ng as pydot
from IPython.display import SVG
from keras.utils.visualize_util import model_to_dot
SVG(model_to_dot(model22).create(prog='dot', format='svg'))