-
Notifications
You must be signed in to change notification settings - Fork 677
/
Copy pathTime Series ARIMA Chaotic
161 lines (131 loc) · 4.69 KB
/
Time Series ARIMA Chaotic
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import pandas as pd
import matplotlib.pyplot as plt
import numpy
import numpy as np
import pandas
import math
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from scipy.interpolate import spline
from pandas.tools.plotting import autocorrelation_plot
from statsmodels.tsa.arima_model import ARIMA
from scipy.stats import gaussian_kde
from statsmodels.tsa.stattools import adfuller
from statsmodels.tsa.seasonal import seasonal_decompose
def norm(x):
return (x-np.min(x))/(np.max(x)-np.min(x))
dataframe = pd.read_csv('Chaotic_TimeSeries_turkey_elec.csv')
dataframe.head()
plt.plot(dataframe)
autocorrelation_plot(dataframe.ix[:,0])
### AVALIAR V3 LINHAS
model00 = ARIMA(np.array(dataframe.ix[:,0]), dates=None,order=(2,1,0))
model11 = model00.fit(disp=1)
model11.summary()
model11.forecast()
resid9=model11.resid
np.mean(abs(resid9))/max(np.array(dataframe.ix[:,0]))
x3 = resid9
x3 = x3[numpy.logical_not(numpy.isnan(x3))]
dftest13 = adfuller(x3, autolag='AIC')
dfoutput1 = pd.Series(dftest13[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
print('Dickey Fuller Test:\n',dfoutput1)
look_back=200
start=0
end=len(resid9)
lag=look_back
xx=np.array(resid9[start+lag:end])
yy=np.array(resid9[start:end-lag])
autocorrelation=np.corrcoef(xx,yy)
print('Autocorrelation of Residuals=',round(autocorrelation[0][1],3))
plt.plot(resid9)
plt.title('Residuals ARIMA')
plt.show()
print(pd.DataFrame(resid9).describe())
plt.hist(resid9)
density = gaussian_kde(resid9)
xs = np.linspace(-50,50,len(resid9))
density.covariance_factor = lambda : .25
density._compute_covariance()
plt.plot(xs,density(xs))
plt.show()
### DELETE OUTLIERS
thre=1.3
delete=np.where(resid9<np.mean(resid9)-thre*np.std(resid9))[0]
train0=np.delete(np.array(dataframe.ix[:,0]),delete)
train=np.sqrt(train0)
plt.hist(train)
rollmean = pd.rolling_mean(train, window=20)
rollstd = pd.rolling_std(train, window=20)
ts_log0 = np.log(train)
ts_log=pd.DataFrame(ts_log0).dropna()
decomposition = seasonal_decompose(np.array(ts_log).reshape(len(ts_log),),freq=100)
trend = decomposition.trend
seasonal = decomposition.seasonal
residual = decomposition.resid
z=np.where(seasonal==min(seasonal))[0]
period=z[2]-z[1]
look_back = period
plt.figure(figsize=(8,8))
plt.subplot(411)
plt.plot(ts_log, label='Original')
plt.legend(loc='upper left')
plt.subplot(412)
plt.plot(trend, label='Trend',color='red')
plt.legend(loc='upper left')
plt.subplot(413)
plt.plot(seasonal,label='Seasonality',color='green')
plt.legend(loc='upper left')
plt.subplot(414)
plt.plot(residual, label='Residuals',color='black')
plt.legend(loc='upper left')
plt.tight_layout()
from statsmodels.tsa.stattools import adfuller
dftest = adfuller(train, autolag='AIC')
dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
dfoutput
'''Not Stationary'''
x = train*seasonal
x = x[numpy.logical_not(numpy.isnan(x))]
dftest1 = adfuller(x, autolag='AIC')
dfoutput1 = pd.Series(dftest1[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used'])
print('Dickey Fuller Test:\n',dfoutput1)
train=np.sqrt(train0)
modelP2= ARIMA(np.array(train), order=(2,1,0))
model_fit2 = modelP2.fit(disp=-1,tol=1e-28,maxiter=20000)
pred71 = model_fit2.forecast()[0]
model_fit2.summary()
print('Precision=',float((pred71[-1]**2)/train0[-1]))
print('Error=',100*(1-float((pred71[-1]**2)/train0[-1])),'percent')
print('Real Stock Value',train0[-1])
print('Predicted Stock Value',pred71[-1]**2)
############# PLOT
len(train0)
window=20
train=np.sqrt(train0)[0:2882]
for i in range(0,5):
modelP2= ARIMA(np.array(train)[-window:], order=(2,1,0))
model_fit2 = modelP2.fit(disp=0,tol=1e-20,transparams=True,trend='c')
pred71 = model_fit2.forecast()[0]
new=np.concatenate((train,pred71),axis=0)
train=new
predicted=train**2
predicted_ok=predicted[-6:]
dataframe3 = pd.read_csv('Chaotic_TimeSeries_turkey_elec.csv')
real_data=np.array(dataframe3.ix[:,0][3279:3285])
plt.figure(figsize=(8,5))
line1,=plt.plot(predicted_ok,marker='o',linewidth=2,color='red',label='PREDICTION')
line2,=plt.plot(real_data,marker='o',linewidth=2,color='blue',label='REAL ASSET VALUE')
plt.annotate('TODAY',(0,136.8))
for i in range(1,6):
plt.annotate('Error: {0}%'.format(round(100*(1-(real_data/predicted_ok))[i],2)),(i-.35,21000))
for k in range(0,5):
plt.annotate('Day + {}'.format(range(0,9)[k]+1),(k+.75,21500+k))
plt.title('ARIMA CHAOTIC TIME SERIES PREDICTION',fontsize=20)
plt.ylabel('Asset Value',fontsize=20)
plt.xlabel('Future Predictions (error)',fontsize=20)
plt.ylim(20000,25000)
plt.legend([line1,line2],loc='lower left')
plt.show()
print('REAL DATA:',real_data,'\n')
print('PREDICTED:',predicted_ok)