Skip to content

Files

Latest commit

 

History

History

Week 1 PA 1 Convolution model - Step by Step - v2

Convolutional Neural Networks: Step by Step

Goal

implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation.

File Description

  • .ipynb file is the solution of Week 1 program assignment 1
    • Convolution+model+-+Step+by+Step+-+v2.ipynb
  • .html file is the html version of .ipynb file.
    • Convolution+model+-+Step+by+Step+-+v2.html
  • .py file
    • Convolution+model+-+Step+by+Step+-+v2.py
  • file
    • Convolution+model+-+Step+by+Step+-+v2.md

Snapshot

  • Recommend read .ipynb via nbviewer
  • computer view. open .html file via brower for quick look.
  • brower view. Convolution+model+-+Step+by+Step+-+v2.md

Implementation

  • Convolution functions, including:
    • Zero Padding
    • Convolve window
    • Convolution forward
    • Convolution backward (optional)
  • Pooling functions, including:
    • Pooling forward
    • Create mask
    • Distribute value
    • Pooling backward (optional)