-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpretraining_CXRBert.py
725 lines (555 loc) · 28.6 KB
/
pretraining_CXRBert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# coding: utf-8
# Copyright 2019 Sinovation Ventures AI Institute
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch pretrain for ZEN model."""
import os
import os.path as osp
from argparse import ArgumentParser
from pathlib import Path
import json
import random
import numpy as np
from collections import namedtuple
import time
import torch
from torch.utils.data import DataLoader, TensorDataset
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
import spacy
from sklearn.feature_extraction.text import TfidfVectorizer
import pickle
import collections
# This is used for running on Huawei Cloud.
oncloud = True
try:
import moxing as mox
except:
oncloud = False
from transformer.file_utils import PYTORCH_PRETRAINED_BERT_CACHE, WEIGHTS_NAME, CONFIG_NAME
from transformer.modeling_cxrbert import BertForMaskedLM
from transformers import AutoConfig, AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer as NewBertTokenizer
from gpt.modeling import GPT2LMHeadModel
from transformer.tokenization import BertTokenizer
from gpt.tokenization import GPT2Tokenizer
from transformer.optimization import AdamW, get_linear_schedule_with_warmup, BertAdam
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
import logging
from apex.parallel import DistributedDataParallel as DDP
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
InputFeatures = namedtuple(
"InputFeatures",
"input_ids input_mask lm_label_ids ")
GPTInputFeatures = namedtuple(
"InputFeatures",
"input_ids")
MaskedLmInstance = collections.namedtuple("MaskedLmInstance",
["index", "label"])
def create_masked_lm_predictions(tokens, masked_lm_prob, max_predictions_per_seq, vocab_list):
"""Creates the predictions for the masked LM objective. This is mostly copied from the Google BERT repo, but
with several refactors to clean it up and remove a lot of unnecessary variables."""
num_to_mask = min(max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob))))
try:
mask_indices = sorted(random.sample(range(1, len(tokens)-1), num_to_mask))
except:
print('Found error in tokens: {}'.format(tokens))
return None, None, None
masked_token_labels = [tokens[index] for index in mask_indices]
for index in mask_indices:
masked_token = None
# 80% of the time, replace with [MASK]
if random.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if random.random() < 0.5:
masked_token = tokens[index]
# 10% of the time, replace with random word
else:
masked_token = random.choice(vocab_list)
tokens[index] = masked_token
return tokens, mask_indices, masked_token_labels
def convert_example_to_features(example, args):
tokens1 = example["tokens"] # context
if args.model_type == 'gpt':
if len(tokens1) > args.max_seq_length:
print('Assertion Warning!')
print(f'{len(tokens1)}') # The preprocessed data should be already truncated
try:
input_ids = args.tokenizer.convert_tokens_to_ids(tokens1)
input_array = -np.ones(args.max_seq_length, dtype=np.int)
input_array[:len(input_ids)] = input_ids
except Exception as e:
print(e)
print(tokens1)
features = GPTInputFeatures(input_ids=input_array)
return features
if len(tokens1) >= args.max_seq_length:
tokens1 = tokens1[:args.max_seq_length]
tokens1[0], tokens1[-1] = '[CLS]', '[SEP]'
# start to split the case_label
tokens, masked_lm_positions, masked_lm_labels = create_masked_lm_predictions( tokens1, args.masked_lm_prob,args.max_predictions_per_seq, args.vocab_list)
if tokens is None:
return None
assert len(tokens) <= args.max_seq_length # The preprocessed data should be already truncated
try:
input_ids = args.tokenizer.convert_tokens_to_ids(tokens)
masked_label_ids = args.tokenizer.convert_tokens_to_ids(masked_lm_labels)
except Exception as e:
print(e)
print(tokens1)
print(tokens)
print(masked_lm_labels)
input_array = np.zeros(args.max_seq_length, dtype=np.int)
input_array[:len(input_ids)] = input_ids
mask_array = np.zeros(args.max_seq_length, dtype=np.bool)
mask_array[:len(input_ids)] = 1
lm_label_array = np.full(args.max_seq_length, dtype=np.int, fill_value=-1)
lm_label_array[masked_lm_positions] = masked_label_ids
features = InputFeatures(input_ids=input_array,
input_mask=mask_array,
# segment_ids=segment_array,
lm_label_ids=lm_label_array,
)
return features
def mask_and_choose(batch, num_samples, args):
seq_len = args.max_seq_length
input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
# gpt 不要做MASK
if args.model_type == 'gpt':
for i, line in enumerate(batch):
example = json.loads(line)
features = convert_example_to_features(example, args)
input_ids[i] = features.input_ids
input_ids = torch.from_numpy(input_ids.astype(np.int64))
return input_ids
input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
for i, line in enumerate(batch):
example = line
# print(example)
features = convert_example_to_features(example, args)
if features is None:
continue
input_ids[i] = features.input_ids
input_masks[i] = features.input_mask
lm_label_ids[i] = features.lm_label_ids
input_ids = torch.from_numpy(input_ids.astype(np.int64))
input_masks = torch.from_numpy(input_masks.astype(np.int64))
lm_label_ids = torch.from_numpy(lm_label_ids.astype(np.int64))
return (input_ids, input_masks, lm_label_ids)
def run_task(data_files, args):
start_time = time.time()
logging.info('Running thread %s, %s files', args.rank, len(data_files))
for i, data_file in enumerate(data_files):
input_data_file = os.path.join(args.pregenerated_data, data_file)
logging.info("Loading inputs from file %s", input_data_file)
examples = []
with open(input_data_file, 'r', encoding='utf-8') as mix_data:
mix_data = json.load(mix_data)
for example_line in tqdm(mix_data, desc="Training examples"):
examples.append(example_line)
print('len example #################', len(examples))
if args.debug:
examples = examples[:20000] # debug
logging.info("num_samples before cut %s", len(examples))
num_samples = int(len(examples)/args.world_size)
if args.model_type == 'bert':
input_ids, input_masks, lm_label_ids = mask_and_choose(examples[args.rank*num_samples:(args.rank+1)*num_samples], num_samples, args)
elif args.model_type == 'gpt':
input_ids = mask_and_choose(examples[args.rank*num_samples:(args.rank+1)*num_samples], num_samples, args)
logging.info("num_samples after cut %s", num_samples)
# for k in range(int(hvd.size())):
data_file_cached = os.path.join(args.local_data_dir, data_file + '.cached.' + str(args.rank))
logging.info("cached file %s", data_file_cached)
with open(data_file_cached, "wb") as handle:
if args.model_type == 'bert':
pickle.dump([input_ids, input_masks, lm_label_ids], handle, protocol=pickle.HIGHEST_PROTOCOL)
elif args.model_type == 'gpt':
pickle.dump(input_ids, handle, protocol=pickle.HIGHEST_PROTOCOL)
logging.info('%s/%s processed in thread %s, time cost is %.2f secs' % (i + 1, len(data_files), args.rank, time.time() - start_time))
def load_doc_tokens_ngrams(args):
data_files = []
for inputfile in os.listdir(args.pregenerated_data):
input_file = os.path.join(args.pregenerated_data, inputfile)
if os.path.isfile(input_file) and inputfile.startswith('mix_tokens'):
data_files.append(inputfile)
file_count = len(data_files)
print('The length of file_count ################ : ', file_count)
run_task(data_files, args)
t_input_ids, t_input_masks, t_lm_label_ids = [], [], []
for i in range(file_count):
data_file_cached = os.path.join(args.local_data_dir, data_files[i] + '.cached.' + str(args.rank))
with open(data_file_cached, "rb") as handle:
input_ids, input_masks, lm_label_ids = pickle.load(handle)
logging.info("Loading inputs from cached file %s", data_file_cached)
logging.info("num_samples %s", len(input_ids))
if i == 0:
t_input_ids, t_input_masks, t_lm_label_ids = [input_ids], [input_masks], [lm_label_ids]
else:
t_input_ids.append(input_ids)
t_input_masks.append(input_masks)
t_lm_label_ids.append(lm_label_ids)
logger.info("Dataset %s loaded", data_file_cached)
t_input_ids = torch.cat(t_input_ids, 0)
t_input_masks = torch.cat(t_input_masks, 0)
t_lm_label_ids = torch.cat(t_lm_label_ids, 0)
print('t_lm_label_ids shape', t_lm_label_ids.shape)
logging.info("total num_samples %s", len(t_input_ids))
for i in range(3):
logging.info("*** Example ***")
logging.info("block %s" % i)
tokens = args.tokenizer.convert_ids_to_tokens(t_input_ids[i].tolist())
logging.info("inputs: %s" % ' '.join([str(item) for item in tokens]))
logging.info("input_masks: %s" % ' '.join([str(item) for item in t_input_masks[i].tolist()]))
logging.info("lm_label_ids: %s" % ' '.join([str(item) for item in t_lm_label_ids[i].tolist()]))
dataset = TensorDataset(t_input_ids, t_input_masks, t_lm_label_ids)
return dataset
def load_doc_tokens_ngrams_gpt(args):
data_files = []
for inputfile in os.listdir(args.pregenerated_data):
input_file = os.path.join(args.pregenerated_data, inputfile)
if os.path.isfile(input_file) and inputfile.endswith('json') and inputfile.startswith('train_doc_tokens_ngrams'):
data_files.append(inputfile)
file_count = len(data_files)
run_task(data_files, args)
t_input_ids, t_input_masks, t_lm_label_ids = [], [], []
for i in range(file_count):
data_file_cached = os.path.join(args.local_data_dir, data_files[i] + '.cached.' + str(args.rank))
with open(data_file_cached, "rb") as handle:
input_ids = pickle.load(handle)
logging.info("Loading inputs from cached file %s", data_file_cached)
logging.info("num_samples %s", len(input_ids))
if i == 0:
t_input_ids = [input_ids]
else:
t_input_ids.append(input_ids)
logger.info("Dataset %s loaded", data_file_cached)
t_input_ids = torch.cat(t_input_ids, 0)
logging.info("total num_samples %s", len(t_input_ids))
for i in range(1):
logging.info("*** Example ***")
logging.info("block %s" % i)
tokens = args.tokenizer.convert_ids_to_tokens(t_input_ids[i].tolist())
logging.info("inputs: %s" % ' '.join([str(item) for item in tokens]))
dataset = TensorDataset(t_input_ids)
return dataset
def spacy_tokenizer(document):
nlp = spacy.load("es_dep_news_trf", exclude=['morphologizer', 'parser', 'ner', 'attribute_ruler', 'lemmatizer'])
# tokenize the document with spaCY
doc = nlp(document)
# Remove stop words and punctuation symbols
tokens = [
token.text for token in doc if (
token.is_stop == False and \
token.is_punct == False and \
token.text.strip() != '' and \
token.text.find("\n") == -1)]
return tokens
def add_new_tokens(sp_text):
# intialize the tokenizer with Spanish Spacy
# apply spacy tokenizer with sklearn
tfidf_vectorizer = TfidfVectorizer(lowercase=False, tokenizer=spacy_tokenizer,
norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False)
# parse matrix of tfidf
length = len(sp_text)
result = tfidf_vectorizer.fit_transform(sp_text)
print('Tf-idf vector shape: ', result.shape)
# get idf of tokens
idf = tfidf_vectorizer.idf_
# get tokens from most frequent in documents to least frequent
idf_sorted_indexes = sorted(range(len(idf)), key=lambda k: idf[k])
idf_sorted = idf[idf_sorted_indexes]
tokens_by_df = np.array(tfidf_vectorizer.get_feature_names())[idf_sorted_indexes]
new_tokens = tokens_by_df
return new_tokens
def main():
parser = ArgumentParser()
parser.add_argument('--pregenerated_data', type=str, required=True, default='/nas/hebin/data/english-exp/books_wiki_tokens_ngrams')
parser.add_argument('--nas_output_dir', type=str, required=True, default='s3://bucket-375/hebin/code/zen/mwe/output')
parser.add_argument('--cache_dir', type=str, default=None, help='')
parser.add_argument('--model', type=str, default='8layer_student', required=True)
parser.add_argument('--data_url', type=str, default="/data/zhangwei/ict_protein/output/protein_seq_input_ids", help='data dir on s3')
parser.add_argument("--epochs", type=int, default=2, help="Number of epochs to train for")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--train_batch_size",
default=16,
type=int,
help="Total batch size for training.")
parser.add_argument("--learning_rate",
default=1e-4,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--max_seq_length", type=int, default=512)
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--debug',
action='store_true',
help="Whether to debug")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument(
"--fp16_opt_level",
type=str,
default="O1",
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html",
)
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument("--masked_lm_prob", type=float, default=0.0,
help="Probability of masking each token for the LM task")
parser.add_argument("--max_predictions_per_seq", type=int, default=77,
help="Maximum number of tokens to mask in each sequence")
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--logging_steps", type=int, default=5, help="Log every X updates steps.")
parser.add_argument("--warmup_steps", default=10000, type=int, help="Linear warmup over warmup_steps.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--model_type", default='bert', type=str)
parser.add_argument("--load_model", default=0, type=int)
parser.add_argument('--tensor_dir', type=str, default=osp.join(os.path.abspath('.'), "labels/all_reason_names.txt"), help='data dir on s3')
args = parser.parse_args()
assert (torch.cuda.is_available())
device_count = torch.cuda.device_count()
args.rank = int(os.getenv('RANK', '0'))
args.world_size = int(os.getenv("WORLD_SIZE", '1'))
init_method = ''
master_ip = os.getenv('MASTER_ADDR', 'localhost')
master_port = os.getenv('MASTER_PORT', '6000')
init_method += master_ip + ':' + master_port
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
print('device_id: %s' % args.local_rank)
print('device_count: %s, rank: %s, world_size: %s' % (device_count, args.rank, args.world_size))
print(init_method)
torch.distributed.init_process_group(backend='nccl', world_size=args.world_size,
rank=args.rank, init_method=init_method)
LOCAL_DIR = args.nas_output_dir
if args.rank == 0:
if not os.path.exists(LOCAL_DIR):
os.makedirs(LOCAL_DIR)
logger.info(LOCAL_DIR + ' created!')
# assert mox.file.exists(LOCAL_DIR)
if args.local_rank == 0:
print('Moxing successfully #################')
logging.info(mox.file.list_directory(args.pregenerated_data, recursive=True))
logging.info(mox.file.list_directory(args.model, recursive=True))
local_save_dir = os.path.join(LOCAL_DIR, 'output', 'bert', 'checkpoints')
tensor_dir = os.path.join(LOCAL_DIR, 'output', 'bert', 'tensorboard')
# tensor_dir = os.path.join(args.tensor_dir, 'tensorboard')
save_name = '_'.join([
'{}'.format(args.model_type),
'epoch', str(args.epochs),
'lr', str(args.learning_rate),
'bsz', str(args.train_batch_size),
'grad_accu', str(args.gradient_accumulation_steps),
str(args.max_seq_length),
'gpu', str(args.world_size),
])
bash_save_dir = os.path.join(local_save_dir, save_name)
bash_tsbd_dir = os.path.join(tensor_dir, save_name)
if args.rank == 0:
if not os.path.exists(bash_save_dir):
os.makedirs(bash_save_dir)
logger.info(bash_save_dir + ' created!')
if not os.path.exists(bash_tsbd_dir):
os.makedirs(bash_tsbd_dir)
logger.info(bash_tsbd_dir + ' created!')
local_data_dir_tmp = '/cache/data/tmp/'
local_data_dir = local_data_dir_tmp + save_name
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
if args.model_type == 'bert':
############# Loading the transformers.BertTokenizer ####################
args.tokenizer = NewBertTokenizer.from_pretrained(args.model, do_lower_case=args.do_lower_case)
vocab_list = list(args.tokenizer.vocab.keys())
print("tokenizer vocab len before extending new tokens: ", len(vocab_list))
############# Loading the AutoConfig ###################################
config = AutoConfig.from_pretrained(
args.model + '/config.json',
cache_dir=None,
)
############# Loading transformers BertModel ##########################
if args.load_model:
model = BertForMaskedLM.from_pretrained(
args.model + '/pytorch_model.bin',
from_tf=bool(".ckpt" in args.model + '/pytorch_model.bin'),
config=config,
cache_dir=None)
else:
model = BertForMaskedLM.from_scratch(args.model)
elif args.model_type == 'gpt':
args.tokenizer = GPT2Tokenizer.from_pretrained(args.model)
args.vocab_list = list(args.tokenizer.encoder.keys())
model = GPT2LMHeadModel.from_scratch(args.model)
model.resize_token_embeddings(len(args.tokenizer))
emb_before = model.bert.embeddings.word_embeddings
print('word embedding shape after ####################### ', emb_before)
args.vocab_list = list(args.tokenizer.vocab.keys())
print("tokenizer vocab len after extending new tokens################: ", len(args.vocab_list))
model.to(device)
if args.local_rank == 0:
tb_writer = SummaryWriter(bash_tsbd_dir)
global_step = 0
step = 0
tr_loss, logging_loss = 0.0, 0.0
end_time, start_time = 0, 0
for epoch in range(args.epochs):
args.local_data_dir = os.path.join(local_data_dir, str(epoch))
if args.local_rank == 0:
os.makedirs(args.local_data_dir)
while 1:
if os.path.exists(args.local_data_dir):
if args.model_type == 'bert':
epoch_dataset = load_doc_tokens_ngrams(args)
elif args.model_type == 'gpt':
epoch_dataset = load_doc_tokens_ngrams_gpt(args)
break
print('Dead loop please check ##############')
if args.local_rank == 0:
logging.info('Dataset in epoch %s', epoch)
logging.info(mox.file.list_directory(args.local_data_dir, recursive=True))
# rank = 0
train_sampler = DistributedSampler(epoch_dataset, num_replicas=1, rank=0)
train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
step_in_each_epoch = len(train_dataloader) // args.gradient_accumulation_steps
num_train_optimization_steps = step_in_each_epoch * args.epochs
logging.info("***** Running training *****")
logging.info(" Num examples = %d", len(epoch_dataset) * args.world_size)
logger.info(" Num Epochs = %d", args.epochs)
logging.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps * args.world_size)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logging.info(" Num steps = %d", num_train_optimization_steps)
# Prepare optimizer
if epoch == 0:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
warm_up_ratio = args.warmup_steps / num_train_optimization_steps
print('warm_up_ratio: {}'.format(warm_up_ratio))
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate,
e=args.adam_epsilon, schedule='warmup_linear',
t_total=num_train_optimization_steps,
warmup=warm_up_ratio)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError("Please install apex from https://www.github.com/nvidia/apex"
" to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.fp16_opt_level,
min_loss_scale=1) #
# apex
model = DDP(model, message_size=10000000,
gradient_predivide_factor=torch.distributed.get_world_size(),
delay_allreduce=True)
logger.info('apex data paralleled!')
model.train()
for step_, batch in enumerate(train_dataloader):
step += 1
batch = tuple(t.to(device) for t in batch)
if args.model_type == 'bert':
input_ids, input_masks, lm_label_ids = batch
# using CXRBert to pretrain
loss, _, _, _ = model(input_ids, attention_mask=input_masks, labels=lm_label_ids)
elif args.model_type == 'gpt':
input_ids = batch
loss = model(input_ids)
tr_loss += loss.item()
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward(retain_graph=True)
else:
loss.backward(retain_graph=True)
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
global_step += 1
if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0 \
and args.local_rank < 2 or global_step < 100:
end_time = time.time()
logger.info(
'Epoch: %s, global_step: %s/%s, lr: %s, loss is %s; '
' (%.2f sec)' %
(epoch, global_step + 1, step_in_each_epoch, optimizer.get_lr()[0],
loss.item() * args.gradient_accumulation_steps,
end_time - start_time))
start_time = time.time()
if args.logging_steps > 0 and global_step % args.logging_steps == 0 and args.local_rank == 0:
tb_writer.add_scalar("lr", optimizer.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps / args.gradient_accumulation_steps, global_step)
logging_loss = tr_loss
# Save a trained model
if args.rank == 0:
saving_path = bash_save_dir
saving_path = Path(os.path.join(saving_path, "epoch_" + str(epoch)))
if saving_path.is_dir() and list(saving_path.iterdir()):
logging.warning(f"Output directory ({ saving_path }) already exists and is not empty!")
saving_path.mkdir(parents=True, exist_ok=True)
logging.info("** ** * Saving fine-tuned model ** ** * ")
model_to_save = model.module if hasattr(model, 'module')\
else model # Only save the model it-self
output_model_file = os.path.join(saving_path, WEIGHTS_NAME)
output_config_file = os.path.join(saving_path, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
args.tokenizer.save_vocabulary(saving_path)
torch.save(optimizer.state_dict(), os.path.join(saving_path, "optimizer.pt"))
logger.info("Saving optimizer and scheduler states to %s", saving_path)
if args.local_rank == 0:
tb_writer.close()
if __name__ == '__main__':
main()