-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
195 lines (156 loc) · 5.62 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# -*- encoding: utf-8 -*-
import argparse
import os
import random
from pathlib import Path
from typing import List, Union
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import numpy as np
import torch
from PIL import Image
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import (
AutoTokenizer,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
TrOCRProcessor,
VisionEncoderDecoderModel,
default_data_collator,
)
from trocr_formula.processor import TrainProcessor
def read_txt(txt_path: Union[Path, str]) -> List[str]:
with open(txt_path, "r", encoding="utf-8") as f:
data = [v.rstrip("\n") for v in f]
return data
class IAMDataset(Dataset):
def __init__(self, data, processor, tokenizer, max_target_length=1024):
self.data = data
self.train_processor = TrainProcessor()
self.processor = processor
self.tokenizer = tokenizer
self.max_target_length = max_target_length
def __getitem__(self, idx):
file_name, text = self.data[idx]
image = Image.open(file_name).convert("RGB")
# data augmentation
image = self.train_processor(np.array(image))
pixel_values = self.processor(image, return_tensors="pt").pixel_values
labels = self.tokenizer(
text,
padding="max_length",
max_length=self.max_target_length,
truncation=True,
)["input_ids"]
labels = [
label if label != self.tokenizer.pad_token_id else -100 for label in labels
]
encoding = {
"pixel_values": pixel_values.squeeze(),
"labels": torch.tensor(labels),
}
return encoding
def __len__(self):
return len(self.data)
def get_dataset(img_dir, txt_path):
data_info = read_txt(txt_path)
need_data = []
for i, one_data in enumerate(tqdm(data_info)):
img_path = img_dir / f"{i:07d}.png"
if img_path.exists():
need_data.append([str(img_path), one_data])
random.shuffle(need_data)
return need_data
def get_HME100K_dataset(img_dir: Path, txt_path: str):
data_info = read_txt(txt_path)
need_data = []
for one_data in tqdm(data_info):
img_name, label = one_data.split("\t")
img_full_path = img_dir / img_name
if img_full_path.exists():
need_data.append([str(img_full_path), label])
random.shuffle(need_data)
return need_data
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--exp_name", type=str, default="test")
args = parser.parse_args()
train_dir = Path("dataset/UniMER-1M")
train_img_dir = train_dir / "images"
train_txt_path = train_dir / "train.txt"
train_data = get_dataset(train_img_dir, train_txt_path)
hme100k_img_dir = train_dir / "HME100K" / "train_images"
hme100k_label_path = train_dir / "HME100K" / "train_labels.txt"
hme_data = get_HME100K_dataset(hme100k_img_dir, hme100k_label_path)
train_data.extend(hme_data)
test_dir = Path("dataset/UniMER-Test")
test_img_dir = test_dir / "cpe"
test_txt_path = test_dir / "cpe.txt"
test_data = get_dataset(test_img_dir, test_txt_path)
max_target_length = 512
model_name = "microsoft/trocr-small-stage1"
processor = TrOCRProcessor.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
train_dataset = IAMDataset(
data=train_data,
processor=processor,
tokenizer=tokenizer,
max_target_length=max_target_length,
)
eval_dataset = IAMDataset(
data=test_data,
processor=processor,
tokenizer=tokenizer,
max_target_length=max_target_length,
)
print("Number of training examples:", len(train_dataset))
print("Number of validation examples:", len(eval_dataset))
encoding = train_dataset[0]
for k, v in encoding.items():
print(k, v.shape)
image = Image.open(train_data[0][0]).convert("RGB")
print(image.size)
labels = encoding["labels"]
labels[labels == -100] = processor.tokenizer.pad_token_id
label_str = processor.decode(labels, skip_special_tokens=True)
print(label_str)
print("Loading the model")
model = VisionEncoderDecoderModel.from_pretrained(model_name)
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.vocab_size = model.config.decoder.vocab_size
# set beam search parameters
model.config.eos_token_id = processor.tokenizer.sep_token_id
model.config.max_length = max_target_length
model.config.early_stopping = True
model.config.num_beams = 10
save_dir = f"outputs/{args.exp_name}"
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
fp16=True,
output_dir=save_dir,
logging_steps=2,
save_steps=0.1,
save_total_limit=1,
eval_steps=0.1,
report_to=["tensorboard"],
num_train_epochs=10,
dataloader_num_workers=4,
)
trainer = Seq2SeqTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=default_data_collator,
)
if list(Path(save_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
save_model_dir = Path(save_dir) / "latest"
trainer.save_model(str(save_model_dir))