-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabel_image.py
171 lines (137 loc) · 5.43 KB
/
label_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Simple image classification with Inception.
Run image classification with your model.
This script is usually used with retrain.py found in this same
directory.
This program creates a graph from a saved GraphDef protocol buffer,
and runs inference on an input JPEG image. You are required
to pass in the graph file and the txt file.
It outputs human readable strings of the top 5 predictions along with
their probabilities.
Change the --image_file argument to any jpg image to compute a
classification of that image.
Example usage:
python label_image.py --graph=retrained_graph.pb
--labels=retrained_labels.txt
--image=flower_photos/daisy/54377391_15648e8d18.jpg
NOTE: To learn to use this file and retrain.py, please see:
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import os
import tensorflow as tf
parser = argparse.ArgumentParser()
parser.add_argument(
'--image', required=True, type=str, help='Absolute path to image file.')
parser.add_argument(
'--num_top_predictions',
type=int,
default=5,
help='Display this many predictions.')
parser.add_argument(
'--graph',
required=True,
type=str,
help='Absolute path to graph file (.pb)')
parser.add_argument(
'--labels',
required=True,
type=str,
help='Absolute path to labels file (.txt)')
parser.add_argument(
'--output_layer',
type=str,
default='final_result:0',
help='Name of the result operation')
parser.add_argument(
'--input_layer',
type=str,
default='DecodeJpeg/contents:0',
help='Name of the input operation')
parser.add_argument(
'--predictions_path',
type=str,
default='predictions.csv',
help='Name of the output file to save predictions')
def load_image(foldername):
"""Read in the image_data to be classified."""
image_data_tot = []
for folder in os.listdir(foldername):
current_folder = os.path.join(foldername, folder)
if not os.path.isdir(current_folder):
continue
for filename in os.listdir(current_folder):
image_file = os.path.join(current_folder, filename)
image_data = tf.gfile.FastGFile(image_file, 'rb').read()
image_data_tot.append((image_file, image_data))
return image_data_tot
def load_labels(filename):
"""Read in labels, one label per line."""
return [line.rstrip() for line in tf.gfile.GFile(filename)]
def load_graph(filename):
"""Unpersists graph from file as default graph."""
with tf.gfile.FastGFile(filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
def run_graph(image_data_tot, labels, input_layer_name, output_layer_name,
num_top_predictions, predictions_path): #
with tf.Session() as sess:
# Feed the image_data as input to the graph.
# predictions will contain a two-dimensional array, where one
# dimension represents the input image count, and the other has
# predictions per class
softmax_tensor = sess.graph.get_tensor_by_name(output_layer_name)
f = open(predictions_path,'w')
for image_path, img in image_data_tot:
try:
predictions, = sess.run(softmax_tensor, {input_layer_name: img})
# Sort to show labels in order of confidence
top_k = predictions.argsort()[-num_top_predictions:][::-1]
for node_id in top_k:
human_string = labels[node_id]
score = predictions[node_id]
f.write('%s,%s,%.5f\n' % (image_path, human_string, score))
print('%s: %s (score = %.5f)' % (image_path, human_string, score))
except Exception as e:
print ('Skipping {}'.format(image_path))
f.close()
return 0
def main(argv):
"""Runs inference on an image."""
if argv[1:]:
raise ValueError('Unused Command Line Args: %s' % argv[1:])
if not tf.gfile.Exists(FLAGS.image):
tf.logging.fatal('image file does not exist %s', FLAGS.image)
if not tf.gfile.Exists(FLAGS.labels):
tf.logging.fatal('labels file does not exist %s', FLAGS.labels)
if not tf.gfile.Exists(FLAGS.graph):
tf.logging.fatal('graph file does not exist %s', FLAGS.graph)
# load image
image_data_tot = load_image(FLAGS.image)
# load labels
labels = load_labels(FLAGS.labels)
# load graph, which is stored in the default session
load_graph(FLAGS.graph)
run_graph(image_data_tot, labels, FLAGS.input_layer, FLAGS.output_layer,
FLAGS.num_top_predictions, FLAGS.predictions_path)
if __name__ == '__main__':
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=sys.argv[:1]+unparsed)