-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
138 lines (118 loc) · 3.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from world_model.datasetmultiview import DatasetMultiview
from torch.utils.data import DataLoader
from trainer import VWMTrainer
from tqdm import tqdm
import lightning as L
from argparse import ArgumentParser
from lightning.pytorch.callbacks import ModelCheckpoint
from lightning.pytorch.loggers import WandbLogger
import os
parser = ArgumentParser()
parser.add_argument("--bs", type=int, default=64)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--img_size", type=int, default=224)
parser.add_argument("--n_epoch", type=int, default=500)
parser.add_argument("--mask_ratio", type=float, default=0.5)
parser.add_argument("--n_epoch_save", type=int, default=50)
parser.add_argument("--wandb_project", type=str, default="SSL_final_project")
parser.add_argument("--exp_name", type=str, default="baseline")
parser.add_argument("--multi_view", action="store_true")
parser.add_argument(
"--mae_type", type=str, default="base", choices=["base", "large", "huge"]
)
args = parser.parse_args()
mae_ckpt_path = f"/users/zli419/data/users/zli419/SSL/SSL_world_model/pretrained/MAE/mae_visualize_vit_{args.mae_type}.pth"
action_dim = 7
train_dataset = DatasetMultiview(
dataset_root="/users/zli419/data/users/zli419/SSL/SSL_world_model",
mode="train",
enable_multi_view=args.multi_view,
)
test_dataset = DatasetMultiview(
dataset_root="/users/zli419/data/users/zli419/SSL/SSL_world_model",
mode="val",
enable_multi_view=True
)
train_loader = DataLoader(
train_dataset,
batch_size=args.bs,
shuffle=True,
num_workers=args.num_workers,
drop_last=True,
)
test_dataset = DataLoader(test_dataset)
callbacks = [
ModelCheckpoint(
filename="{epoch:04d}",
every_n_epochs=args.n_epoch_save,
monitor="epoch",
mode="max",
save_top_k=5,
save_on_train_epoch_end=True,
),
]
wandb_logger = WandbLogger(
project=args.wandb_project,
name=args.exp_name,
log_model=False,
)
hparams = vars(args)
wandb_logger.log_hyperparams(hparams)
os.makedirs(f"logs/{args.exp_name}", exist_ok=True)
VWM_trainer = VWMTrainer(
mae_ckpt_path,
action_dim,
f"logs/{args.exp_name}",
train_dataset.intrinsic,
mask_ratio=args.mask_ratio,
)
trainer = L.Trainer(
max_epochs=args.n_epoch,
accelerator="gpu",
devices=[0],
deterministic=False,
detect_anomaly=False,
benchmark=True,
check_val_every_n_epoch=10,
logger=wandb_logger,
callbacks=callbacks,
)
trainer.fit(
model=VWM_trainer, train_dataloaders=train_loader, val_dataloaders=test_dataset
)
# breakpoint()
# for epoch in range(args.n_epoch):
# total_loss = 0.0
# for x in tqdm(my_loader, ncols=100):
# img1, img2, action, src_view, tgt_view = x
# imgs = torch.stack([img1, img2], dim=1).cuda()
# action = action.cuda()
# src_plucker = (
# plucker_embedding(src_view.cuda(), uv, intr)
# .reshape(bs, img_size, img_size, 6)
# .permute(0, 3, 1, 2)
# )
# tgt_plucker = (
# plucker_embedding(tgt_view.cuda(), uv, intr)
# .reshape(bs, img_size, img_size, 6)
# .permute(0, 3, 1, 2)
# )
# loss, pred, mask = net(imgs, action, src_plucker, tgt_plucker, mask_ratio=0.5)
# opt.zero_grad()
# loss.backward()
# opt.step()
# total_loss += loss.item()
# writer.add_scalar("Loss/train", total_loss / len(my_loader), epoch)
# if (epoch + 1) % 100 == 0:
# torch.save(
# net.state_dict(),
# f"/users/zli419/data/users/zli419/SSL/SSL_world_model/results/vwm_{epoch + 1}.pth",
# )
# if (epoch + 1) % 20 == 0:
# writer.add_image("Image/Current_Frame", img1[0], global_step=epoch)
# pred = net.mae.unpatchify(pred).detach().cpu()
# writer.add_image("Image/Next_Frame", pred[0], global_step=epoch)
# writer.add_image("Image/Error", pred[0] - img2[0], global_step=epoch)
# writer.flush()
# writer.close()