forked from NVlabs/nvdiffrec
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcolmap2poses.py
824 lines (720 loc) · 32.7 KB
/
colmap2poses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
# most of the code is refactored colmap parsing from LLFF, a GPLv3 project.
# this is meant to be comparable to instant-ngp's colmap2nerf.py, and uses the
# same arguments, with additional functions for masking and LLFF format poses.
# LLFF format .npy files will always be made, remove if you ONLY want NeRF format
#~~~provide a dataset folder path with another "image" subfolder with the pics~~~
# ~~~colmap can be installed to PATH or linked as an argument (--colmap_path)~~~
# usage: (for LLFF format, nvdiffrec)
# colmap2poses.py --mask "/path/to/dataset/"
# a "mask" folder is required, manual or passed with --mask as shown
# if you wish for NeRF format, pass --json
# masks must be applied to the image for NeRF format, (--alpha)
# nvdiffrec loads the .npy first, but for NeRF format datasets, the image
# extentions must removed to prevent errors
# video and aabb_scale options are from instant-ngp, follow their guide to use
# https://github.com/NVlabs/instant-ngp/blob/master/docs/nerf_dataset_tips.md
import argparse
import os
import sys
import numpy as np
import json
import math
import cv2
import subprocess
import struct
import collections
import shutil
def parse_args():
parser = argparse.ArgumentParser(description="convert colmap to NeRF or LLFF(NeRD) format, automask objects, and process video")
parser.add_argument('--json', action="store_true",
default='false', help='output json/instant-ngp format')
parser.add_argument("--mask", action="store_true",
default="", help="use rembg to automatically mask the entire image folder. reccomended to use manual masks for better results in nvdiffrec.")
parser.add_argument("--alpha", action="store_true",
default="", help="only works when --mask is enabled, applys a mask to the alpha channel of the image (instead of a separate folder). enables masking in instant-ngp.")
parser.add_argument("--video_in",
default="", help="run ffmpeg first to convert a provided video file into a set of images. uses the video_fps parameter also. needs ffmpeg in path or installed.")
parser.add_argument("--video_fps",
default=3)
parser.add_argument("--time_slice",
default="", help="time (in seconds) in the format t1,t2 within which the images should be generated from the video. eg: \"--time_slice '10,300'\" will generate images only from 10th second to 300th second of the video")
parser.add_argument('--match_type', type=str,
default='exhaustive_matcher', help='type of matcher used. Valid options: exhaustive_matcher sequential_matcher. Other matchers not supported at this time')
parser.add_argument("--database_db",
default="database.db", help="colmap database filename")
parser.add_argument("--aabb_scale",
default=2, choices=["1","2","4","8","16"], help="large scene scale factor. 1=scene fits in unit cube; power of 2 up to 16")
parser.add_argument("--out_json",
default="transforms_test.json", help="output json filename")
parser.add_argument("--images",
default="images", help="name of the directory containing the images")
parser.add_argument('--colmap_path', type=str,
default='', help='path to colmap batch file, if not in PATH')
parser.add_argument('scenedir', type=str,
help='input scene directory, where the dataset will be stored, required to run')
args = parser.parse_args()
return args
args = parse_args()
if args.match_type != 'exhaustive_matcher' and args.match_type != 'sequential_matcher':
print('ERROR: matcher type ' + args.match_type + ' is not valid. Aborting')
sys.exit()
CameraModel = collections.namedtuple(
"CameraModel", ["model_id", "model_name", "num_params"])
Camera = collections.namedtuple(
"Camera", ["id", "model", "width", "height", "params"])
BaseImage = collections.namedtuple(
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])
Point3D = collections.namedtuple(
"Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])
class Image(BaseImage):
def qvec2rotmat(self):
return qvec2rotmat(self.qvec)
CAMERA_MODELS = {
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
CameraModel(model_id=3, model_name="RADIAL", num_params=5),
CameraModel(model_id=4, model_name="OPENCV", num_params=8),
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
CameraModel(model_id=7, model_name="FOV", num_params=5),
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
}
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model) \
for camera_model in CAMERA_MODELS])
def run_colmap(basedir, match_type, colmap_path="Colmap"):
logfile_name = os.path.join(basedir, 'colmap_output.txt')
logfile = open(logfile_name, 'w')
feature_extractor_args = [
colmap_path, 'feature_extractor',
'--database_path', os.path.join(basedir, args.database_db),
'--image_path', os.path.join(basedir, args.images),
'--ImageReader.single_camera', '1',
# '--SiftExtraction.use_gpu', '0',
]
feat_output = ( subprocess.check_output(feature_extractor_args, universal_newlines=True) )
logfile.write(feat_output)
print('Features extracted')
exhaustive_matcher_args = [
colmap_path, match_type,
'--database_path', os.path.join(basedir, args.database_db),
]
match_output = ( subprocess.check_output(exhaustive_matcher_args, universal_newlines=True) )
logfile.write(match_output)
print('Features matched')
p = os.path.join(basedir, 'sparse')
if not os.path.exists(p):
os.makedirs(p)
mapper_args = [
colmap_path, 'mapper',
'--database_path', os.path.join(basedir, args.database_db),
'--image_path', os.path.join(basedir, args.images),
'--output_path', os.path.join(basedir, 'sparse'), # --export_path changed to --output_path in colmap 3.6
'--Mapper.num_threads', '16',
'--Mapper.init_min_tri_angle', '4',
'--Mapper.multiple_models', '0',
'--Mapper.extract_colors', '0',
]
map_output = ( subprocess.check_output(mapper_args, universal_newlines=True) )
logfile.write(map_output)
logfile.close()
print('Sparse map created')
print( 'Finished running COLMAP, see {} for logs'.format(logfile_name) )
def run_ffmpeg(args):
images = args.images
video = args.video_in
fps = float(args.video_fps) or 1.0
print(f"running ffmpeg with input video file={video}, output image folder={images}, fps={fps}.")
if (input(f"warning! folder '{images}' will be deleted/replaced. continue? (Y/n)").lower().strip()+"y")[:1] != "y":
sys.exit(1)
try:
shutil.rmtree(f"{args.scenedir}/{args.images}/")
except:
pass
os.mkdir(os.path.normpath(f"{args.scenedir}/{args.images}/"))
time_slice_value = ""
time_slice = args.time_slice
if time_slice:
start, end = time_slice.split(",")
time_slice_value = f",select='between(t\,{start}\,{end})'"
do_system(f"ffmpeg -i {video} -qscale:v 1 -qmin 1 -vf \"fps={fps}{time_slice_value}, scale=-2:512\" {os.path.join(args.scenedir,args.images)}\%04d.jpg")
def gen_poses(basedir, match_type, colmap_path, factors=None):
files_needed = ['{}.bin'.format(f) for f in ['cameras', 'images', 'points3D']]
if os.path.exists(os.path.join(basedir, 'sparse/0')):
files_had = os.listdir(os.path.join(basedir, 'sparse/0'))
else:
files_had = []
if not all([f in files_had for f in files_needed]):
print('Need to run COLMAP')
run_colmap(basedir, match_type, colmap_path)
else:
print('Don\'t need to run COLMAP')
print( 'Post-colmap')
load_save_pose(basedir)
# poses, pts3d, perm = load_colmap_data(basedir)
# save_poses(basedir, poses, pts3d, perm)
if factors is not None:
print( 'Factors:', factors)
minify(basedir, factors)
print( 'Done with imgs2poses' )
return True
def load_colmap_data(realdir):
camerasfile = os.path.join(realdir, 'sparse/0/cameras.bin')
camdata = read_cameras_binary(camerasfile)
# cam = camdata[camdata.keys()[0]]
list_of_keys = list(camdata.keys())
cam = camdata[list_of_keys[0]]
print( 'Cameras', len(cam))
h, w, f = cam.height, cam.width, cam.params[0]
# w, h, f = factor * w, factor * h, factor * f
hwf = np.array([h,w,f]).reshape([3,1])
imagesfile = os.path.join(realdir, 'sparse/0/images.bin')
imdata = read_images_binary(imagesfile)
w2c_mats = []
bottom = np.array([0,0,0,1.]).reshape([1,4])
names = [imdata[k].name for k in imdata]
print( 'Images #', len(names))
perm = np.argsort(names)
for k in imdata:
im = imdata[k]
R = im.qvec2rotmat()
t = im.tvec.reshape([3,1])
m = np.concatenate([np.concatenate([R, t], 1), bottom], 0)
w2c_mats.append(m)
w2c_mats = np.stack(w2c_mats, 0)
c2w_mats = np.linalg.inv(w2c_mats)
poses = c2w_mats[:, :3, :4].transpose([1,2,0])
poses = np.concatenate([poses, np.tile(hwf[..., np.newaxis], [1,1,poses.shape[-1]])], 1)
points3dfile = os.path.join(realdir, 'sparse/0/points3D.bin')
pts3d = read_points3d_binary(points3dfile)
# must switch to [-u, r, -t] from [r, -u, t], NOT [r, u, -t]
poses = np.concatenate([poses[:, 1:2, :], poses[:, 0:1, :], -poses[:, 2:3, :], poses[:, 3:4, :], poses[:, 4:5, :]], 1)
return poses, pts3d, perm
def save_poses(basedir, poses, pts3d, perm):
pts_arr = []
vis_arr = []
for k in pts3d:
pts_arr.append(pts3d[k].xyz)
cams = [0] * poses.shape[-1]
for ind in pts3d[k].image_ids:
if len(cams) < ind - 1:
print('ERROR: the correct camera poses for current points cannot be accessed')
return
cams[ind-1] = 1
vis_arr.append(cams)
pts_arr = np.array(pts_arr)
vis_arr = np.array(vis_arr)
print( 'Points', pts_arr.shape, 'Visibility', vis_arr.shape )
zvals = np.sum(-(pts_arr[:, np.newaxis, :].transpose([2,0,1]) - poses[:3, 3:4, :]) * poses[:3, 2:3, :], 0)
valid_z = zvals[vis_arr==1]
print( 'Depth stats', valid_z.min(), valid_z.max(), valid_z.mean() )
save_arr = []
for i in perm:
vis = vis_arr[:, i]
zs = zvals[:, i]
zs = zs[vis==1]
close_depth, inf_depth = np.percentile(zs, .1), np.percentile(zs, 99.9)
# print( i, close_depth, inf_depth )
save_arr.append(np.concatenate([poses[..., i].ravel(), np.array([close_depth, inf_depth])], 0))
save_arr = np.array(save_arr)
np.save(os.path.join(basedir, 'poses_bounds.npy'), save_arr)
def save_views(realdir,names):
with open(os.path.join(realdir,'view_imgs.txt'), mode='w') as f:
f.writelines('\n'.join(names))
f.close()
def load_save_pose(realdir):
# load colmap data
model_path = os.path.join(realdir, 'sparse/0/')
modeldata = read_model(model_path, ".bin")
camdata = modeldata[0]
list_of_keys = list(camdata.keys())
cam = camdata[list_of_keys[0]]
print( 'Cameras', cam)
h, w, f = cam.height, cam.width, cam.params[0]
hwf = np.array([h,w,f]).reshape([3,1])
imdata = modeldata[1]
real_ids = [k for k in imdata]
w2c_mats = []
bottom = np.array([0,0,0,1.]).reshape([1,4])
names = [imdata[k].name for k in imdata]
print( 'Images #', len(names))
# if (len(names)< 32):
# raise ValueError(f'{realdir} only {len(names)} images register, need Re-run colmap or reset the threshold')
perm = np.argsort(names)
sort_names = [names[i] for i in perm]
save_views(realdir,sort_names)
for k in imdata:
im = imdata[k]
R = im.qvec2rotmat()
t = im.tvec.reshape([3,1])
m = np.concatenate([np.concatenate([R, t], 1), bottom], 0)
w2c_mats.append(m)
w2c_mats = np.stack(w2c_mats, 0)
c2w_mats = np.linalg.inv(w2c_mats)
poses = c2w_mats[:, :3, :4].transpose([1,2,0])
poses = np.concatenate([poses, np.tile(hwf[..., np.newaxis], [1,1,poses.shape[-1]])], 1)
pts3d = modeldata[2]
# must switch to [-u, r, -t] from [r, -u, t], NOT [r, u, -t]
poses = np.concatenate([poses[:, 1:2, :], poses[:, 0:1, :], -poses[:, 2:3, :], poses[:, 3:4, :], poses[:, 4:5, :]], 1)
# save pose
pts_arr = []
vis_arr = []
for k in pts3d:
pts_arr.append(pts3d[k].xyz)
cams = [0] * poses.shape[-1]
for ind in pts3d[k].image_ids:
if len(cams) < real_ids.index(ind):
print('ERROR: the correct camera poses for current points cannot be accessed')
return
cams[real_ids.index(ind)] = 1
vis_arr.append(cams)
pts_arr = np.array(pts_arr)
vis_arr = np.array(vis_arr)
print( 'Points', pts_arr.shape, 'Visibility', vis_arr.shape)
zvals = np.sum(-(pts_arr[:, np.newaxis, :].transpose([2,0,1]) - poses[:3, 3:4, :]) * poses[:3, 2:3, :], 0)
valid_z = zvals[vis_arr==1]
print( 'Depth stats', valid_z.min(), valid_z.max(), valid_z.mean() )
save_arr = []
for i in perm:
vis = vis_arr[:, i]
zs = zvals[:, i]
zs = zs[vis==1]
close_depth, inf_depth = np.percentile(zs, .1), np.percentile(zs, 99.9)
save_arr.append(np.concatenate([poses[..., i].ravel(), np.array([close_depth, inf_depth])], 0))
save_arr = np.array(save_arr)
np.save(os.path.join(realdir, 'poses_bounds.npy'), save_arr)
def convert_to_json (args):
AABB_SCALE = int(args.aabb_scale)
text = os.path.normpath(args.scenedir + '/text')
OUT_PATH = os.path.normpath(args.scenedir+ '/' + args.out_json)
sparce = os.path.normpath(args.scenedir + '/sparse')
try:
shutil.rmtree(text)
except:
pass
do_system(f"mkdir {text}")
do_system(f"colmap model_converter --input_path {sparce}/0 --output_path {text} --output_type TXT")
print(f"outputting to {OUT_PATH}...")
with open(os.path.join(text,"cameras.txt"), "r") as f:
angle_x = math.pi / 2
for line in f:
# 1 SIMPLE_RADIAL 2048 1536 1580.46 1024 768 0.0045691
# 1 OPENCV 3840 2160 3178.27 3182.09 1920 1080 0.159668 -0.231286 -0.00123982 0.00272224
# 1 RADIAL 1920 1080 1665.1 960 540 0.0672856 -0.0761443
if line[0] == "#":
continue
els = line.split(" ")
w = float(els[2])
h = float(els[3])
fl_x = float(els[4])
fl_y = float(els[4])
k1 = 0
k2 = 0
p1 = 0
p2 = 0
cx = w / 2
cy = h / 2
if els[1] == "SIMPLE_PINHOLE":
cx = float(els[5])
cy = float(els[6])
elif els[1] == "PINHOLE":
fl_y = float(els[5])
cx = float(els[6])
cy = float(els[7])
elif els[1] == "SIMPLE_RADIAL":
cx = float(els[5])
cy = float(els[6])
k1 = float(els[7])
elif els[1] == "RADIAL":
cx = float(els[5])
cy = float(els[6])
k1 = float(els[7])
k2 = float(els[8])
elif els[1] == "OPENCV":
fl_y = float(els[5])
cx = float(els[6])
cy = float(els[7])
k1 = float(els[8])
k2 = float(els[9])
p1 = float(els[10])
p2 = float(els[11])
else:
print("unknown camera model ", els[1])
# fl = 0.5 * w / tan(0.5 * angle_x);
angle_x = math.atan(w / (fl_x * 2)) * 2
angle_y = math.atan(h / (fl_y * 2)) * 2
fovx = angle_x * 180 / math.pi
fovy = angle_y * 180 / math.pi
print(f"camera:\n\tres={w,h}\n\tcenter={cx,cy}\n\tfocal={fl_x,fl_y}\n\tfov={fovx,fovy}\n\tk={k1,k2} p={p1,p2} ")
with open(os.path.join(text,"images.txt"), "r") as f:
i = 0
bottom = np.array([0.0, 0.0, 0.0, 1.0]).reshape([1, 4])
out = {
"camera_angle_x": angle_x,
"camera_angle_y": angle_y,
"fl_x": fl_x,
"fl_y": fl_y,
"k1": k1,
"k2": k2,
"p1": p1,
"p2": p2,
"cx": cx,
"cy": cy,
"w": w,
"h": h,
"aabb_scale": AABB_SCALE,
"frames": [],
}
up = np.zeros(3)
for line in f:
line = line.strip()
if line[0] == "#":
continue
i = i + 1
if i % 2 == 1:
elems=line.split(" ") # 1-4 is quat, 5-7 is trans, 9ff is filename (9, if filename contains no spaces)
name = str(f"./{args.images}/{elems[9]}")
b=sharpness(os.path.normpath(f"{args.scenedir}/{args.images}/{elems[9]}"))
print(name, "sharpness=",b)
image_id = int(elems[0])
qvec = np.array(tuple(map(float, elems[1:5])))
tvec = np.array(tuple(map(float, elems[5:8])))
R = qvec2rotmat(-qvec)
t = tvec.reshape([3,1])
m = np.concatenate([np.concatenate([R, t], 1), bottom], 0)
c2w = np.linalg.inv(m)
c2w[0:3,2] *= -1 # flip the y and z axis
c2w[0:3,1] *= -1
c2w = c2w[[1,0,2,3],:] # swap y and z
c2w[2,:] *= -1 # flip whole world upside down
up += c2w[0:3,1]
frame={"file_path":name,"sharpness":b,"transform_matrix": c2w}
out["frames"].append(frame)
nframes = len(out["frames"])
up = up / np.linalg.norm(up)
print("up vector was", up)
R = rotmat(up,[0,0,1]) # rotate up vector to [0,0,1]
R = np.pad(R,[0,1])
R[-1, -1] = 1
for f in out["frames"]:
f["transform_matrix"] = np.matmul(R, f["transform_matrix"]) # rotate up to be the z axis
# find a central point they are all looking at
print("computing center of attention...")
totw = 0.0
totp = np.array([0.0, 0.0, 0.0])
for f in out["frames"]:
mf = f["transform_matrix"][0:3,:]
for g in out["frames"]:
mg = g["transform_matrix"][0:3,:]
p, w = closest_point_2_lines(mf[:,3], mf[:,2], mg[:,3], mg[:,2])
if w > 0.01:
totp += p*w
totw += w
totp /= totw
print(totp) # the cameras are looking at totp
for f in out["frames"]:
f["transform_matrix"][0:3,3] -= totp
avglen = 0.
for f in out["frames"]:
avglen += np.linalg.norm(f["transform_matrix"][0:3,3])
avglen /= nframes
print("avg camera distance from origin", avglen)
for f in out["frames"]:
f["transform_matrix"][0:3,3] *= 4.0 / avglen # scale to "nerf sized"
for f in out["frames"]:
f["transform_matrix"] = f["transform_matrix"].tolist()
print(nframes,"frames")
print(f"writing {OUT_PATH}")
with open(OUT_PATH, "w") as outfile:
json.dump(out, outfile, indent=2)
def do_system(arg):
print(f"==== running: {arg}")
err = os.system(arg)
if err:
print("FATAL: command failed")
sys.exit(err)
def minify(basedir, factors=[], resolutions=[]):
needtoload = False
for r in factors:
imgdir = os.path.join(basedir, 'images_{}'.format(r))
if not os.path.exists(imgdir):
needtoload = True
for r in resolutions:
imgdir = os.path.join(basedir, 'images_{}x{}'.format(r[1], r[0]))
if not os.path.exists(imgdir):
needtoload = True
if not needtoload:
return
def qvec2rotmat(qvec):
return np.array([
[1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])
def rotmat(a, b):
a, b = a / np.linalg.norm(a), b / np.linalg.norm(b)
v = np.cross(a, b)
c = np.dot(a, b)
s = np.linalg.norm(v)
kmat = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
return np.eye(3) + kmat + kmat.dot(kmat) * ((1 - c) / (s ** 2 + 1e-10))
def variance_of_laplacian(image):
return cv2.Laplacian(image, cv2.CV_64F).var()
def sharpness(imagePath):
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
fm = variance_of_laplacian(gray)
return fm
def closest_point_2_lines(oa, da, ob, db): # returns point closest to both rays of form o+t*d, and a weight factor that goes to 0 if the lines are parallel
da = da / np.linalg.norm(da)
db = db / np.linalg.norm(db)
c = np.cross(da, db)
denom = np.linalg.norm(c)**2
t = ob - oa
ta = np.linalg.det([t, db, c]) / (denom + 1e-10)
tb = np.linalg.det([t, da, c]) / (denom + 1e-10)
if ta > 0:
ta = 0
if tb > 0:
tb = 0
return (oa+ta*da+ob+tb*db) * 0.5, denom
def read_points3d_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
points3D = {}
with open(path_to_model_file, "rb") as fid:
num_points = read_next_bytes(fid, 8, "Q")[0]
for point_line_index in range(num_points):
binary_point_line_properties = read_next_bytes(
fid, num_bytes=43, format_char_sequence="QdddBBBd")
point3D_id = binary_point_line_properties[0]
xyz = np.array(binary_point_line_properties[1:4])
rgb = np.array(binary_point_line_properties[4:7])
error = np.array(binary_point_line_properties[7])
track_length = read_next_bytes(
fid, num_bytes=8, format_char_sequence="Q")[0]
track_elems = read_next_bytes(
fid, num_bytes=8*track_length,
format_char_sequence="ii"*track_length)
image_ids = np.array(tuple(map(int, track_elems[0::2])))
point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
points3D[point3D_id] = Point3D(
id=point3D_id, xyz=xyz, rgb=rgb,
error=error, image_ids=image_ids,
point2D_idxs=point2D_idxs)
return points3D
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
"""Read and unpack the next bytes from a binary file.
:param fid:
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
:param endian_character: Any of {@, =, <, >, !}
:return: Tuple of read and unpacked values.
"""
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)
def read_model(path, ext):
if ext == ".txt":
cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
images = read_images_text(os.path.join(path, "images" + ext))
points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
else:
cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
images = read_images_binary(os.path.join(path, "images" + ext))
points3D = read_points3d_binary(os.path.join(path, "points3D") + ext)
return cameras, images, points3D
def read_points3D_text(path):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DText(const std::string& path)
void Reconstruction::WritePoints3DText(const std::string& path)
"""
points3D = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
point3D_id = int(elems[0])
xyz = np.array(tuple(map(float, elems[1:4])))
rgb = np.array(tuple(map(int, elems[4:7])))
error = float(elems[7])
image_ids = np.array(tuple(map(int, elems[8::2])))
point2D_idxs = np.array(tuple(map(int, elems[9::2])))
points3D[point3D_id] = Point3D(id=point3D_id, xyz=xyz, rgb=rgb,
error=error, image_ids=image_ids,
point2D_idxs=point2D_idxs)
return points3D
def read_cameras_text(path):
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasText(const std::string& path)
void Reconstruction::ReadCamerasText(const std::string& path)
"""
cameras = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
camera_id = int(elems[0])
model = elems[1]
width = int(elems[2])
height = int(elems[3])
params = np.array(tuple(map(float, elems[4:])))
cameras[camera_id] = Camera(id=camera_id, model=model,
width=width, height=height,
params=params)
return cameras
def read_cameras_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
cameras = {}
with open(path_to_model_file, "rb") as fid:
num_cameras = read_next_bytes(fid, 8, "Q")[0]
for camera_line_index in range(num_cameras):
camera_properties = read_next_bytes(
fid, num_bytes=24, format_char_sequence="iiQQ")
camera_id = camera_properties[0]
model_id = camera_properties[1]
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
width = camera_properties[2]
height = camera_properties[3]
num_params = CAMERA_MODEL_IDS[model_id].num_params
params = read_next_bytes(fid, num_bytes=8*num_params,
format_char_sequence="d"*num_params)
cameras[camera_id] = Camera(id=camera_id,
model=model_name,
width=width,
height=height,
params=np.array(params))
assert len(cameras) == num_cameras
return cameras
def read_images_text(path):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesText(const std::string& path)
void Reconstruction::WriteImagesText(const std::string& path)
"""
images = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
image_id = int(elems[0])
qvec = np.array(tuple(map(float, elems[1:5])))
tvec = np.array(tuple(map(float, elems[5:8])))
camera_id = int(elems[8])
image_name = elems[9]
elems = fid.readline().split()
xys = np.column_stack([tuple(map(float, elems[0::3])),
tuple(map(float, elems[1::3]))])
point3D_ids = np.array(tuple(map(int, elems[2::3])))
images[image_id] = Image(
id=image_id, qvec=qvec, tvec=tvec,
camera_id=camera_id, name=image_name,
xys=xys, point3D_ids=point3D_ids)
return images
def read_images_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
images = {}
with open(path_to_model_file, "rb") as fid:
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
for image_index in range(num_reg_images):
binary_image_properties = read_next_bytes(
fid, num_bytes=64, format_char_sequence="idddddddi")
image_id = binary_image_properties[0]
qvec = np.array(binary_image_properties[1:5])
tvec = np.array(binary_image_properties[5:8])
camera_id = binary_image_properties[8]
image_name = ""
current_char = read_next_bytes(fid, 1, "c")[0]
while current_char != b"\x00": # look for the ASCII 0 entry
image_name += current_char.decode("utf-8")
current_char = read_next_bytes(fid, 1, "c")[0]
num_points2D = read_next_bytes(fid, num_bytes=8,
format_char_sequence="Q")[0]
x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D,
format_char_sequence="ddq"*num_points2D)
xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])),
tuple(map(float, x_y_id_s[1::3]))])
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
images[image_id] = Image(
id=image_id, qvec=qvec, tvec=tvec,
camera_id=camera_id, name=image_name,
xys=xys, point3D_ids=point3D_ids)
return images
if __name__=='__main__':
if args.video_in != "":
run_ffmpeg(args)
if args.mask != "":
from rembg import remove
if args.alpha != "":
print("applying alpha masks, images will be saved as _alpha.png (this is VERY slow)")
try: os.mkdir(os.path.normpath(f"{args.scenedir}/images_alpha/"))
except: pass
for img in os.listdir(os.path.normpath(f"{args.scenedir}/{args.images}/")):
with open(os.path.normpath(f"{args.scenedir}/{args.images}/{img}"), "rb") as i:
with open(os.path.normpath(f"{args.scenedir}/images_alpha/{img}_alpha.png"), 'wb') as o:
im = i.read()
try:
output = remove(im, alpha_matting=True)
o.write(output)
except:
print(f"matting failed for {img}, applying mask")
output = remove(im)
o.write(output)
print(f"{img}_alpha.png done")
if (input(f"please filter images with bad alpha in images_alpha. continue? (Y/n)").lower().strip()+"n")[:1] != "n":
sys.exit(1)
print('images_alpha is the new default image folder, please do not rename it or the files inside after colmapping')
args.images = "images_alpha"
else:
print("producing mask images")
try: os.mkdir(os.path.normpath(f"{args.scenedir}/masks/"))
except: pass
for img in os.listdir(os.path.normpath(f"{args.scenedir}/{args.images}/")):
im = cv2.imread(os.path.normpath(f"{args.scenedir}/{args.images}/{img}"))
output = remove(im, only_mask=True)
cv2.imwrite(os.path.normpath(f"{args.scenedir}/masks/{img}"), output)
print(f"{img} done")
if args.colmap_path != '':
if os.name == 'nt' and "COLMAP.bat" not in args.colmap_path:
sys.exit("custom colmap path fail, please include a valid path, including \"COLMAP.bat\" in windows")
elif os.path.exists(args.colmap_path):
print ('valid custom colmap path!')
colmap_path = os.path.normpath(args.colmap_path)
print("using colmap path:", colmap_path)
else: sys.exit("colmap path fail, make sure your path is accessable")
elif os.name == 'nt':
colmap_path = "colmap.bat"
gen_poses(args.scenedir, args.match_type, colmap_path)
if args.json == 1:
convert_to_json(args)