diff --git a/.buildkite/pipeline.yml b/.buildkite/pipeline.yml index b96c8e1aaf..26668b555a 100644 --- a/.buildkite/pipeline.yml +++ b/.buildkite/pipeline.yml @@ -20,7 +20,6 @@ steps: matrix: setup: version: - - "1.6" - "1" group: - "NNODE" diff --git a/.github/workflows/CI.yml b/.github/workflows/CI.yml index 0e65682df6..866d6547c9 100644 --- a/.github/workflows/CI.yml +++ b/.github/workflows/CI.yml @@ -21,7 +21,6 @@ jobs: - Forward version: - "1" - - "1.6" steps: - uses: actions/checkout@v4 - uses: julia-actions/setup-julia@v1 diff --git a/Project.toml b/Project.toml index a544d3318f..5cbe9bedd8 100644 --- a/Project.toml +++ b/Project.toml @@ -57,7 +57,7 @@ Flux = "0.13, 0.14" ForwardDiff = "0.10" Functors = "0.4" Integrals = "3.1" -IntegralsCubature = "0.2" +IntegralsCubature = "=0.2.2" LogDensityProblems = "2" Lux = "0.4, 0.5" MCMCChains = "6" diff --git a/docs/Project.toml b/docs/Project.toml index e136596981..a0da3777ee 100644 --- a/docs/Project.toml +++ b/docs/Project.toml @@ -24,7 +24,7 @@ Documenter = "0.27" DomainSets = "0.6" Flux = "0.13, 0.14" Integrals = "3.3" -IntegralsCubature = "0.2" +IntegralsCubature = "=0.2.2" Lux = "0.4, 0.5" ModelingToolkit = "8.33" NeuralPDE = "5.3" diff --git a/docs/src/examples/Lotka_Volterra_BPINNs.md b/docs/src/examples/Lotka_Volterra_BPINNs.md index f8a8739acf..a61b1a4882 100644 --- a/docs/src/examples/Lotka_Volterra_BPINNs.md +++ b/docs/src/examples/Lotka_Volterra_BPINNs.md @@ -60,7 +60,7 @@ To make the example more realistic we add random normally distributed noise to t ```julia -# Dataset creation for parameter estimation(30 percent noise) +# Dataset creation for parameter estimation (30% noise) time = solution.t u = hcat(solution.u...) x = u[1, :] + (0.3 .*u[1, :]).*randn(length(u[1, :])) @@ -88,8 +88,7 @@ alg1 = NeuralPDE.BNNODE(chainflux, Normal(2, 2), Normal(2, 2), Normal(0, 2), - ], - n_leapfrog = 30, progress = true) + ], progress = true) sol_flux_pestim = solve(prob, alg1) @@ -98,7 +97,7 @@ alg2 = NeuralPDE.BNNODE(chainlux, draw_samples = 1000, phystd = [0.05, 0.05], priorsNNw = (0.0, 10.0), - n_leapfrog = 30, progress = true) + progress = true) sol_lux = solve(prob, alg2)