-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtest.py
175 lines (150 loc) · 6.86 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python
# coding: utf-8
import argparse
import csv
import os
import os.path as osp
import time
from glob import glob
# from mean_average_precision.detection_map import DetectionMAP
import numpy as np
import torch
from tqdm import tqdm
from head_detection.data import (cfg_mnet, cfg_res50, cfg_res50_4fpn,
cfg_res152, ch_anchors, combined_anchors,
headhunt_anchors, sh_anchors)
from head_detection.models.head_detect import customRCNN
from head_detection.utils import get_state_dict, plot_ims, to_torch
from head_detection.vision.utils import init_distributed_mode
try:
from scipy.misc import imread, imsave
except ImportError:
from scipy.misc.pilutil import imread
parser = argparse.ArgumentParser(description='Testing script')
parser.add_argument('--test_dataset', help='Dataset .txt file')
parser.add_argument('--pretrained_model', help='resume net for retraining')
parser.add_argument('--plot_folder', help='Location to plot results on images')
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--benchmark', default='Combined', help='Benchmark for training/validation')
parser.add_argument('--batch_size', default=1, type=int, help='Batch size')
parser.add_argument('--min_size', default=800, type=int, help='Optionally plot first N images of test')
parser.add_argument('--max_size', default=1400, type=int, help='Optionally plot first N images of test')
parser.add_argument('--ext', default='.jpg', type=str, help='Image file extensions')
parser.add_argument('--outfile', help='Location to save results in mot format')
parser.add_argument('--backbone', default='resnet50', help='Backbone network mobile0.25 or resnet50')
parser.add_argument('--context', help='Whether to use context model')
parser.add_argument('--use_deform', default=False, type=bool, help='Use Deformable SSH')
parser.add_argument('--det_thresh', default=0.3, type=float, help='Number of workers used in dataloading')
parser.add_argument('--default_filter', default=False, type=bool, help='Use old filters')
parser.add_argument('--soft_nms', default=False, type=bool, help='Use soft nms?')
parser.add_argument('--upscale_rpn', default=False, type=bool, help='Upscale RPN feature maps')
args = parser.parse_args()
##################################
## Set device and config ##########
##################################
if torch.cuda.is_available():
device = torch.device('cuda')
cfg = None
if args.backbone == "mobile0.25":
cfg = cfg_mnet
elif args.backbone == "resnet50":
cfg = cfg_res50_4fpn
elif args.backbone == "resnet152":
cfg = cfg_res152
else:
raise ValueError("Invalid configuration")
##########################
# outfile and plot file ##
##########################
if args.plot_folder is not None:
os.makedirs(osp.join(args.plot_folder, 'img'), exist_ok=True)
args.plot_folder = osp.join(args.plot_folder, 'img')
else:
raise AssertionError("Must provide save directory")
if args.outfile is None:
args.outfile = osp.join(args.plot_folder, 'results.txt')
def fetch_images():
all_ext = '*'+args.ext
all_ims = sorted(glob(osp.join(args.test_dataset, all_ext)))
batched_ims = [all_ims[k:k+args.batch_size] for k in range(0, len(all_ims), args.batch_size)]
for b_ind, batch in enumerate(batched_ims):
img_ar = []
target_ar = []
for idx, im in enumerate(batch):
img_ar.extend(to_torch(imread(im)))
target_ar.append(get_test_dict((args.batch_size*b_ind)+idx+1))
yield img_ar, target_ar
def get_test_dict(idx):
"""
Get FRCNN style dict
"""
num_objs = 0
boxes = torch.zeros((num_objs, 4), dtype=torch.float32)
return {'boxes': boxes,
'labels': torch.ones((num_objs,), dtype=torch.int64),
'image_id': torch.tensor([idx]),
'area': (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0]),
'iscrowd': torch.zeros((num_objs,), dtype=torch.int64),
'visibilities': torch.zeros((num_objs), dtype=torch.float32)}
def create_model(combined_cfg):
kwargs = {}
kwargs['min_size'] = args.min_size
kwargs['max_size'] = args.max_size
kwargs['box_score_thresh'] = args.det_thresh
kwargs['box_nms_thresh'] = 0.5
kwargs['box_detections_per_img'] = 300 # increase max det to max val in our benchmark
model = customRCNN(cfg=combined_cfg, use_deform=args.use_deform,
context=args.context, default_filter=args.default_filter,
soft_nms=args.soft_nms, upscale_rpn=args.upscale_rpn,
**kwargs).cuda()
return model
def write_results_files(results):
files = {}
for image_id, res in results.items():
# check if out in keys and create empty list if not
if args.outfile not in files.keys():
files[args.outfile] = []
for box, score in zip(res['boxes'], res['scores']):
x1 = box[0].item()
y1 = box[1].item()
x2 = box[2].item()
y2 = box[3].item()
files[args.outfile].append(
[image_id, -1, x1, y1, x2 - x1, y2 - y1, score.item(), -1, -1, -1])
for k, v in files.items():
with open(k, "w") as of:
writer = csv.writer(of, delimiter=',')
for d in v:
writer.writerow(d)
@torch.no_grad()
def test():
# print("Testing FPN. On single GPU without Parallelism")
cpu_device = torch.device("cpu")
# Set benchmark related parameters
if args.benchmark == 'ScutHead':
combined_cfg = {**cfg, **sh_anchors}
elif args.benchmark == 'CHuman':
combined_cfg = {**cfg, **ch_anchors}
elif args.benchmark == 'Combined':
combined_cfg = {**cfg, **combined_anchors}
else:
raise ValueError("New dataset has to be registered")
model = create_model(combined_cfg)
new_state_dict = get_state_dict(model, args.pretrained_model)
model.load_state_dict(new_state_dict, strict=True)
model = model.eval()
results = {}
for img_ind, (images, targets) in enumerate(tqdm(fetch_images())):
np_images = [(ims.cpu().numpy()*255.).astype(np.uint8) for ims in images]
torch.cuda.synchronize()
model_time = time.time()
outputs = model(images)
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
for b_ind, (np_im, out, tar) in enumerate(zip(np_images, outputs, targets)):
out_dict = {'boxes': out['boxes'].cpu(), 'scores': out['scores'].cpu()}
results[tar['image_id'].item()] = out_dict
plot_images = plot_ims(np_im, out['boxes'].cpu().numpy())
imsave(osp.join(args.plot_folder, str((args.batch_size*img_ind)+b_ind+1) + '.jpg'), plot_images)
write_results_files(results)
if __name__ == '__main__':
test()