-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGestureReading.py
585 lines (485 loc) · 23.2 KB
/
GestureReading.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import csv
import copy
import argparse
import itertools
from collections import Counter
from collections import deque
import cv2 as cv
import numpy as np
import mediapipe as mp
from google.cloud import texttospeech
from playsound import playsound
from utils import CvFpsCalc
from model import KeyPointClassifier
from model import PointHistoryClassifier
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=int, default=0)
parser.add_argument("--width", help='cap width', type=int, default=960)
parser.add_argument("--height", help='cap height', type=int, default=540)
parser.add_argument('--use_static_image_mode', action='store_true')
parser.add_argument("--min_detection_confidence",
help='min_detection_confidence',
type=float,
default=0.7)
parser.add_argument("--min_tracking_confidence",
help='min_tracking_confidence',
type=int,
default=0.5)
args = parser.parse_args()
return args
def main():
# Argument parsing #################################################################
args = get_args()
cap_width = args.width
cap_height = args.height
use_static_image_mode = args.use_static_image_mode
min_detection_confidence = args.min_detection_confidence
min_tracking_confidence = args.min_tracking_confidence
play_the_sound = 0
word_memory = []
use_brect = True
# Camera preparation ###############################################################
cap = cv.VideoCapture(1)
cap.set(cv.CAP_PROP_FRAME_WIDTH, cap_width)
cap.set(cv.CAP_PROP_FRAME_HEIGHT, cap_height)
# Model load #############################################################
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
static_image_mode=use_static_image_mode,
max_num_hands=2,
min_detection_confidence=min_detection_confidence,
min_tracking_confidence=min_tracking_confidence,
)
keypoint_classifier = KeyPointClassifier()
point_history_classifier = PointHistoryClassifier()
# Read labels ###########################################################
with open('model/keypoint_classifier/keypoint_classifier_label.csv',
encoding='utf-8-sig') as f:
keypoint_classifier_labels = csv.reader(f)
keypoint_classifier_labels = [
row[0] for row in keypoint_classifier_labels
]
with open(
'model/point_history_classifier/point_history_classifier_label.csv',
encoding='utf-8-sig') as f:
point_history_classifier_labels = csv.reader(f)
point_history_classifier_labels = [
row[0] for row in point_history_classifier_labels
]
# FPS Measurement ########################################################
cvFpsCalc = CvFpsCalc(buffer_len=10)
# Coordinate history #################################################################
history_length = 16
point_history = deque(maxlen=history_length)
# Finger gesture history ################################################
finger_gesture_history = deque(maxlen=history_length)
# ########################################################################
mode = 0
while True:
fps = cvFpsCalc.get()
# Process Key (ESC: end) #################################################
key = cv.waitKey(10)
if key == 27: # ESC
break
number, mode = select_mode(key, mode)
# Camera capture #####################################################
ret, image = cap.read()
if not ret:
break
image = cv.flip(image, 1) # Mirror display
debug_image = copy.deepcopy(image)
# Detection implementation #############################################################
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
image.flags.writeable = False
results = hands.process(image)
image.flags.writeable = True
# ####################################################################
if results.multi_hand_landmarks is not None:
for hand_landmarks, handedness in zip(results.multi_hand_landmarks,
results.multi_handedness):
# Bounding box calculation
brect = calc_bounding_rect(debug_image, hand_landmarks)
# Landmark calculation
landmark_list = calc_landmark_list(debug_image, hand_landmarks)
# Conversion to relative coordinates / normalized coordinates
pre_processed_landmark_list = pre_process_landmark(
landmark_list)
pre_processed_point_history_list = pre_process_point_history(
debug_image, point_history)
# Write to the dataset file
logging_csv(number, mode, pre_processed_landmark_list,
pre_processed_point_history_list)
# Hand sign classification
hand_sign_id = keypoint_classifier(pre_processed_landmark_list)
if hand_sign_id == 2: # Point gesture
point_history.append(landmark_list[8])
else:
point_history.append([0, 0])
# Finger gesture classification
finger_gesture_id = 0
point_history_len = len(pre_processed_point_history_list)
if point_history_len == (history_length * 2):
finger_gesture_id = point_history_classifier(
pre_processed_point_history_list)
# Calculates the gesture IDs in the latest detection
finger_gesture_history.append(finger_gesture_id)
most_common_fg_id = Counter(
finger_gesture_history).most_common()
# Drawing part
debug_image = draw_bounding_rect(use_brect, debug_image, brect)
debug_image = draw_landmarks(debug_image, landmark_list)
debug_image = draw_info_text(
debug_image,
brect,
handedness,
keypoint_classifier_labels[hand_sign_id],
point_history_classifier_labels[most_common_fg_id[0][0]],
)
if(mode == 0):
if(word_memory == [] or word_memory[-1] == keypoint_classifier_labels[hand_sign_id]):
word_memory.append(keypoint_classifier_labels[hand_sign_id])
if(len(word_memory)==50):
TextToSpeech(keypoint_classifier_labels[hand_sign_id])
playsound('output.mp3')
word_memory = []
elif(word_memory[-1] != keypoint_classifier_labels[hand_sign_id]):
word_memory = []
else:
point_history.append([0, 0])
debug_image = draw_point_history(debug_image, point_history)
debug_image = draw_info(debug_image, fps, mode, number)
# Screen reflection #############################################################
cv.imshow('Hand Gesture Recognition', debug_image)
cap.release()
cv.destroyAllWindows()
def select_mode(key, mode):
number = -1
if 48 <= key <= 57: # 0 ~ 9
number = key - 48
if 97 <= key <= 103:
number = key - 87
if key == 110: # n
mode = 0
if key == 107: # k
mode = 1
if key == 104: # h
mode = 2
return number, mode
def calc_bounding_rect(image, landmarks):
image_width, image_height = image.shape[1], image.shape[0]
landmark_array = np.empty((0, 2), int)
for _, landmark in enumerate(landmarks.landmark):
landmark_x = min(int(landmark.x * image_width), image_width - 1)
landmark_y = min(int(landmark.y * image_height), image_height - 1)
landmark_point = [np.array((landmark_x, landmark_y))]
landmark_array = np.append(landmark_array, landmark_point, axis=0)
x, y, w, h = cv.boundingRect(landmark_array)
return [x, y, x + w, y + h]
def calc_landmark_list(image, landmarks):
image_width, image_height = image.shape[1], image.shape[0]
landmark_point = []
# Keypoint
for _, landmark in enumerate(landmarks.landmark):
landmark_x = min(int(landmark.x * image_width), image_width - 1)
landmark_y = min(int(landmark.y * image_height), image_height - 1)
# landmark_z = landmark.z
landmark_point.append([landmark_x, landmark_y])
return landmark_point
def pre_process_landmark(landmark_list):
temp_landmark_list = copy.deepcopy(landmark_list)
# Convert to relative coordinates
base_x, base_y = 0, 0
for index, landmark_point in enumerate(temp_landmark_list):
if index == 0:
base_x, base_y = landmark_point[0], landmark_point[1]
temp_landmark_list[index][0] = temp_landmark_list[index][0] - base_x
temp_landmark_list[index][1] = temp_landmark_list[index][1] - base_y
# Convert to a one-dimensional list
temp_landmark_list = list(
itertools.chain.from_iterable(temp_landmark_list))
# Normalization
max_value = max(list(map(abs, temp_landmark_list)))
def normalize_(n):
return n / max_value
temp_landmark_list = list(map(normalize_, temp_landmark_list))
return temp_landmark_list
def pre_process_point_history(image, point_history):
image_width, image_height = image.shape[1], image.shape[0]
temp_point_history = copy.deepcopy(point_history)
# Convert to relative coordinates
base_x, base_y = 0, 0
for index, point in enumerate(temp_point_history):
if index == 0:
base_x, base_y = point[0], point[1]
temp_point_history[index][0] = (temp_point_history[index][0] -
base_x) / image_width
temp_point_history[index][1] = (temp_point_history[index][1] -
base_y) / image_height
# Convert to a one-dimensional list
temp_point_history = list(
itertools.chain.from_iterable(temp_point_history))
return temp_point_history
def logging_csv(number, mode, landmark_list, point_history_list):
if mode == 0:
pass
if mode == 1 and (0 <= number <= 16):
csv_path = 'model/keypoint_classifier/keypoint.csv'
with open(csv_path, 'a', newline="") as f:
writer = csv.writer(f)
writer.writerow([number, *landmark_list])
if mode == 2 and (0 <= number <= 16):
csv_path = 'model/point_history_classifier/point_history.csv'
with open(csv_path, 'a', newline="") as f:
writer = csv.writer(f)
writer.writerow([number, *point_history_list])
return
def draw_landmarks(image, landmark_point):
if len(landmark_point) > 0:
# Thumb
cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[3]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[3]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[3]), tuple(landmark_point[4]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[3]), tuple(landmark_point[4]),
(255, 255, 255), 2)
# Index finger
cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[6]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[6]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[6]), tuple(landmark_point[7]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[6]), tuple(landmark_point[7]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[7]), tuple(landmark_point[8]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[7]), tuple(landmark_point[8]),
(255, 255, 255), 2)
# Middle finger
cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[10]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[10]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[10]), tuple(landmark_point[11]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[10]), tuple(landmark_point[11]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[11]), tuple(landmark_point[12]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[11]), tuple(landmark_point[12]),
(255, 255, 255), 2)
# Ring finger
cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[14]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[14]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[14]), tuple(landmark_point[15]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[14]), tuple(landmark_point[15]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[15]), tuple(landmark_point[16]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[15]), tuple(landmark_point[16]),
(255, 255, 255), 2)
# Little finger
cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[18]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[18]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[18]), tuple(landmark_point[19]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[18]), tuple(landmark_point[19]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[19]), tuple(landmark_point[20]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[19]), tuple(landmark_point[20]),
(255, 255, 255), 2)
# Palm
cv.line(image, tuple(landmark_point[0]), tuple(landmark_point[1]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[0]), tuple(landmark_point[1]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[1]), tuple(landmark_point[2]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[1]), tuple(landmark_point[2]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[5]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[2]), tuple(landmark_point[5]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[9]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[5]), tuple(landmark_point[9]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[13]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[9]), tuple(landmark_point[13]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[17]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[13]), tuple(landmark_point[17]),
(255, 255, 255), 2)
cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[0]),
(0, 0, 0), 6)
cv.line(image, tuple(landmark_point[17]), tuple(landmark_point[0]),
(255, 255, 255), 2)
# Key Points
for index, landmark in enumerate(landmark_point):
if index == 0: # 手首1
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 1: # 手首2
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 2: # 親指:付け根
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 3: # 親指:第1関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 4: # 親指:指先
cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
if index == 5: # 人差指:付け根
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 6: # 人差指:第2関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 7: # 人差指:第1関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 8: # 人差指:指先
cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
if index == 9: # 中指:付け根
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 10: # 中指:第2関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 11: # 中指:第1関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 12: # 中指:指先
cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
if index == 13: # 薬指:付け根
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 14: # 薬指:第2関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 15: # 薬指:第1関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 16: # 薬指:指先
cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
if index == 17: # 小指:付け根
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 18: # 小指:第2関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 19: # 小指:第1関節
cv.circle(image, (landmark[0], landmark[1]), 5, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 5, (0, 0, 0), 1)
if index == 20: # 小指:指先
cv.circle(image, (landmark[0], landmark[1]), 8, (255, 255, 255),
-1)
cv.circle(image, (landmark[0], landmark[1]), 8, (0, 0, 0), 1)
return image
def draw_bounding_rect(use_brect, image, brect):
if use_brect:
# Outer rectangle
cv.rectangle(image, (brect[0], brect[1]), (brect[2], brect[3]),
(0, 0, 0), 1)
return image
def draw_info_text(image, brect, handedness, hand_sign_text,
finger_gesture_text):
cv.rectangle(image, (brect[0], brect[1]), (brect[2], brect[1] - 22),
(0, 0, 0), -1)
info_text = handedness.classification[0].label[0:]
if hand_sign_text != "":
info_text = info_text + ':' + hand_sign_text
cv.putText(image, info_text, (brect[0] + 5, brect[1] - 4),
cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1, cv.LINE_AA)
if finger_gesture_text != "":
cv.putText(image, "Finger Gesture:" + finger_gesture_text, (10, 60),
cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 4, cv.LINE_AA)
cv.putText(image, "Finger Gesture:" + finger_gesture_text, (10, 60),
cv.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255), 2,
cv.LINE_AA)
return image
def draw_point_history(image, point_history):
for index, point in enumerate(point_history):
if point[0] != 0 and point[1] != 0:
cv.circle(image, (point[0], point[1]), 1 + int(index / 2),
(152, 251, 152), 2)
return image
def draw_info(image, fps, mode, number):
cv.putText(image, "FPS:" + str(fps), (10, 30), cv.FONT_HERSHEY_SIMPLEX,
1.0, (0, 0, 0), 4, cv.LINE_AA)
cv.putText(image, "FPS:" + str(fps), (10, 30), cv.FONT_HERSHEY_SIMPLEX,
1.0, (255, 255, 255), 2, cv.LINE_AA)
mode_string = ['Logging Key Point', 'Logging Point History']
if 1 <= mode <= 2:
cv.putText(image, "MODE:" + mode_string[mode - 1], (10, 90),
cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1,
cv.LINE_AA)
if 0 <= number <= 16:
cv.putText(image, "NUM:" + str(number), (10, 110),
cv.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1,
cv.LINE_AA)
return image
def TextToSpeech(text):
"""Synthesizes speech from the input string of text."""
client = texttospeech.TextToSpeechClient.from_service_account_file('client_service_key.json')
input_text = texttospeech.SynthesisInput(text=text)
# Note: the voice can also be specified by name.
# Names of voices can be retrieved with client.list_voices().
voice = texttospeech.VoiceSelectionParams(
language_code="fr-Fr",
name="fr-FR-Standard-A",
ssml_gender=texttospeech.SsmlVoiceGender.MALE,
)
audio_config = texttospeech.AudioConfig(
audio_encoding=texttospeech.AudioEncoding.MP3
)
response = client.synthesize_speech(
request={"input": input_text, "voice": voice, "audio_config": audio_config}
)
os.remove("output.mp3")
# The response's audio_content is binary.
with open("output.mp3", "wb") as out:
out.write(response.audio_content)
# print('Audio content written to file "output.mp3"')
if __name__ == '__main__':
main()