-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperience.py
65 lines (56 loc) · 2.07 KB
/
experience.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import cupy as cp
from collections import deque
from numpy.random import default_rng
from settings import *
class ReplayMemory:
def __init__(self, capacity=1_000_000, nlap=1, height=HEIGHT, width=WIDTH, nframes=NFRAMES):
self.capacity = capacity
self.height = height
self.width = width
self.nframes = nframes
self.current_state = np.zeros((capacity,height,width), dtype=np.uint8)
self.action_idx = np.zeros(capacity, dtype=np.int8)
self.reward = np.zeros(capacity, dtype=np.int8)
self.ndone = np.zeros(capacity, dtype=np.bool)
self.idx = 0
self.rng = default_rng()
self.nlap = nlap
self.batch_size = BATCH_SIZE
self.min_idx = self.nframes - 1
self.idx_len = self.nframes + self.nlap
self.lens = self.get_lens(self.batch_size)
self.len = 0
def store_transition(self, cur_state, action_idx, reward, done):
self.current_state[self.idx] = cur_state
self.action_idx[self.idx] = action_idx
self.reward[self.idx] = reward
self.ndone[self.idx] = not done
self.idx = (self.idx + 1) % self.capacity
if self.len < self.capacity:
self.len += 1
def get_lens(self, batch_size):
lens = np.full(batch_size, self.idx_len)
np.cumsum(lens, out=lens)
return lens
def indices(self, start, end, batch_size):
if batch_size != self.batch_size:
self.batch_size = batch_size
self.lens = self.get_lens(self.batch_size)
i = np.ones(self.lens[-1], dtype=int)
i[0] = start[0]
i[self.lens[:-1]] += start[1:]
i[self.lens[:-1]] -= end[:-1]
np.cumsum(i, out=i)
return i.reshape(batch_size, self.idx_len)
def sample_random(self, batch_size=BATCH_SIZE):
oidxs = self.rng.choice(self.len - self.min_idx - self.nlap, size=batch_size, replace=False)
idxs = oidxs + self.min_idx
action_idx = self.action_idx[idxs]
reward = self.reward[idxs]
ndone = self.ndone[idxs]
state_idxs = self.indices(oidxs, idxs+(self.nlap+1), batch_size)
states = self.current_state[state_idxs]
cur_state = np.moveaxis(states[:,:self.nframes], 1, -1)
nxt_state = np.moveaxis(states[:,self.nlap:], 1, -1)
return cur_state, action_idx, reward, nxt_state, ndone