-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_train.py
105 lines (86 loc) · 3.33 KB
/
cnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import random
import os
import _pickle as cPickle
from os import listdir
from PIL import Image
import numpy as np
from sklearn.decomposition import PCA
import pandas as pd
import csv
import sys
import itertools
from sklearn.metrics import accuracy_score,confusion_matrix,f1_score
import gzip
def dump_object(dump_file,obj):
writer = gzip.open(dump_file, 'wb')
cPickle.dump(obj, writer,-1)
writer.close()
def get_rewards(file_path):
#read labels from csv file
data = pd.read_csv(file_path,header = None)
reward = np.array(data.values).astype(int)
#append one more reward for first image
reward = np.vstack((np.array([[0]]),reward)).T[0]
return reward
def dump_data_per_episode(dump_file,images,rewards,stride,samples):
feature_data = []
label_data = []
i = 0
consume = 15
while True:
#if i exceeds total length
if(i+7 >= len(images)):
break
#get all index combinations of images
ind_combs = np.array(list(itertools.combinations(np.arange(i,i+6), 4)))
length = len(ind_combs)
#no of samples based on current reward
curr_reward = rewards[i+7]
if curr_reward == 1:
rand_ind = np.random.choice(length,samples,replace=False)
consume += 2*samples
else:
rand_ind = np.random.choice(length, 1,replace=False)
if consume > 0:
consume = consume - 1
ind_combs = ind_combs[rand_ind]
if consume > 0:
for indexes in ind_combs:
#append the last image
indexes = np.append(indexes,i+6)
img_sampling = np.array(images[indexes])
img_stack = np.stack(img_sampling, axis = 2)
#create training data
feature_data.append(img_stack)
label_data.append(curr_reward)
i += stride
print("1's:",np.sum(np.array(label_data)))
print("total len:",len(label_data))
dump_object(dump_file,[feature_data,label_data])
def preprocess_img(root_folder,pickle_folder,stride,samples):
list_episodes = sorted(listdir(root_folder))
#process episodes for training data
for episode in list_episodes:
images_per_episode = []
rewards = []
print("Episode no:",episode)
#store size of each episode
images_folder = sorted(listdir(root_folder + '/' + episode))
for img_file in images_folder:
if img_file.endswith(".csv"):
#get rewards of this episode
rewards = get_rewards(root_folder + '/' + episode +'/'+ img_file)
elif img_file.endswith(".png"):
imagepil = Image.open(root_folder + '/' + episode +'/'+ img_file)
imagepil = np.array(imagepil.convert('L'))
images_per_episode.append(imagepil)
images_per_episode = np.array(images_per_episode)
#print(imagepil.shape)
dump_file = root_folder + '/' + pickle_folder + '/' + str(episode) + '.pkl'
dump_data_per_episode(dump_file,images_per_episode,rewards,stride,samples)
if __name__ == '__main__':
#root path
path = '/home/gaurav/Desktop/IITD_1stsem/ML/train_dataset'
pickle_folder = sys.argv[1]
#dump the train data per episode
preprocess_img(path,pickle_folder,stride=1,samples=15)