forked from wgrathwohl/JEM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_amgen_ebm.py
312 lines (266 loc) · 13.7 KB
/
train_amgen_ebm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import argparse
import torch
import torch.nn as nn
import torch.utils
import torch.distributions as distributions
from torch.utils.data import DataLoader, Dataset, TensorDataset
from torchvision import datasets, transforms
import torchvision
import sklearn.datasets as skdatasets
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import utils
import toy_data
TOY_DSETS = ("moons", "circles", "8gaussians", "pinwheel", "2spirals", "checkerboard", "rings", "swissroll")
def logit(x, alpha=1e-6):
x = x * (1 - 2 * alpha) + alpha
return torch.log(x) - torch.log(1 - x)
def main(args):
utils.makedirs(args.save_dir)
if args.dataset in TOY_DSETS:
logp_net = nn.Sequential(
nn.utils.weight_norm(nn.Linear(args.data_dim, args.h_dim)),
nn.LeakyReLU(.2),
nn.utils.weight_norm(nn.Linear(args.h_dim, args.h_dim)),
nn.LeakyReLU(.2),
nn.Linear(args.h_dim, 1)
)
logp_fn = lambda x: logp_net(x)# - (x * x).flatten(start_dim=1).sum(1)/10
class G(nn.Module):
def __init__(self):
super().__init__()
self.generator = nn.Sequential(
nn.Linear(args.noise_dim, args.h_dim, bias=False),
nn.BatchNorm1d(args.h_dim, affine=True),
nn.ReLU(),
nn.Linear(args.h_dim, args.h_dim, bias=False),
nn.BatchNorm1d(args.h_dim, affine=True),
nn.ReLU(),
nn.Linear(args.h_dim, args.data_dim)
)
self.logsigma = nn.Parameter(torch.zeros(1,))
else:
logp_net = nn.Sequential(
nn.utils.weight_norm(nn.Linear(args.data_dim, 1000)),
nn.LeakyReLU(.2),
nn.utils.weight_norm(nn.Linear(1000, 500)),
nn.LeakyReLU(.2),
nn.utils.weight_norm(nn.Linear(500, 500)),
nn.LeakyReLU(.2),
nn.utils.weight_norm(nn.Linear(500, 250)),
nn.LeakyReLU(.2),
nn.utils.weight_norm(nn.Linear(250, 250)),
nn.LeakyReLU(.2),
nn.utils.weight_norm(nn.Linear(250, 250)),
nn.LeakyReLU(.2),
nn.Linear(250, 1, bias=False)
)
logp_fn = lambda x: logp_net(x) # - (x * x).flatten(start_dim=1).sum(1)/10
class G(nn.Module):
def __init__(self):
super().__init__()
self.generator = nn.Sequential(
nn.Linear(args.noise_dim, 500, bias=False),
nn.BatchNorm1d(500, affine=True),
nn.Softplus(),
nn.Linear(500, 500, bias=False),
nn.BatchNorm1d(500, affine=True),
nn.Softplus(),
nn.Linear(500, args.data_dim),
nn.Sigmoid()
)
# self.logsigma = nn.Parameter((torch.ones(1,) * (args.sgld_step * 2)**.5).log(), requires_grad=False)
#self.logsigma = nn.Parameter(torch.zeros(1, ) - 5)
self.logsigma = nn.Parameter((torch.ones(1,) * .1).log(), requires_grad=False)
g = G()
params = list(logp_net.parameters()) + list(g.parameters())
optimizer = torch.optim.Adam(params, lr=args.lr, betas=[.0, .9], weight_decay=args.weight_decay)
#optimizer = torch.optim.Adam(params, lr=args.lr, weight_decay=args.weight_decay)
train_loader, test_loader = get_data(args)
sqrt = lambda x: int(torch.sqrt(torch.Tensor([x])))
plot = lambda p, x: torchvision.utils.save_image(torch.clamp(x, 0, 1), p, normalize=False, nrow=sqrt(x.size(0)))
def sample_q(n):
h = torch.randn((n, args.noise_dim)).to(device)
x_mu = g.generator(h)
x = x_mu + torch.randn_like(x_mu) * g.logsigma.exp()
return x, h
def logq_unnorm(x, h):
logph = distributions.Normal(0, 1).log_prob(h).sum(1)
px_given_h = distributions.Normal(g.generator(h), g.logsigma.exp())
logpx_given_h = px_given_h.log_prob(x).sum(1)
return logpx_given_h + logph
def refine_q(x_init, h_init, n_steps, sgld_step):
x_k = torch.clone(x_init).requires_grad_()
h_k = torch.clone(h_init).requires_grad_()
sgld_sigma = (2 * sgld_step) ** .5
for k in range(n_steps):
logp = logp_fn(x_k)[:, 0]
logq = logq_unnorm(x_k, h_k)
g_h = torch.autograd.grad(logq.sum(), [h_k], retain_graph=True)[0]
# sample h tilde ~ q(h|x_k)
h_tilde = h_k + g_h * sgld_step + torch.randn_like(h_k) * sgld_sigma
h_tilde = h_tilde.detach()
logq_tilde = logq_unnorm(x_k, h_tilde)
logq = logq_unnorm(x_k, h_k)
g_x = torch.autograd.grad(logp.sum() + logq.sum() - logq_tilde.sum(), [x_k], retain_graph=True)[0]
# x update
x_k = x_k + g_x * sgld_step + torch.randn_like(x_k) * sgld_sigma
x_k = x_k.detach().requires_grad_()#.clamp(0, 1)
# h update
logq = logq_unnorm(x_k, h_k)
g_h = torch.autograd.grad(logq.sum(), [h_k], retain_graph=True)[0]
h_k = h_k + g_h * sgld_step + torch.randn_like(h_k) * sgld_sigma
h_k = h_k.detach().requires_grad_()
# return x_k.detach().clamp(0, 1), h_k.detach()
return x_k.detach(), h_k.detach()
def refine_q_hmc(x_init, h_init, n_steps, sgld_step, beta=.5):
x_k = torch.clone(x_init).requires_grad_()
h_k = torch.clone(h_init).requires_grad_()
v_x = torch.zeros_like(x_k)
v_h = torch.zeros_like(h_k)
sgld_sigma_tilde = (2 * sgld_step) ** .5
sgld_sigma = (2 * beta * sgld_step) ** .5
for k in range(n_steps):
logp = logp_fn(x_k)[:, 0]
logq = logq_unnorm(x_k, h_k)
g_h = torch.autograd.grad(logq.sum(), [h_k], retain_graph=True)[0]
# sample h tilde ~ q(h|x_k)
h_tilde = h_k + g_h * sgld_step + torch.randn_like(h_k) * sgld_sigma_tilde
h_tilde = h_tilde.detach()
logq_tilde = logq_unnorm(x_k, h_tilde)
logq = logq_unnorm(x_k, h_k)
g_x = torch.autograd.grad(logp.sum() + logq.sum() - logq_tilde.sum(), [x_k], retain_graph=True)[0]
# x update
v_x = (v_x * (1 - beta) + sgld_step * g_x + torch.randn_like(x_k) * sgld_sigma).detach()
x_k = (x_k + v_x).detach().requires_grad_().clamp(0, 1)
# h update
logq = logq_unnorm(x_k, h_k)
g_h = torch.autograd.grad(logq.sum(), [h_k], retain_graph=True)[0]
v_h = (v_h * (1 - beta) + sgld_step * g_h + torch.randn_like(h_k) * sgld_sigma).detach()
h_k = (h_k + v_h).detach().requires_grad_()
return x_k.detach().clamp(0, 1), h_k.detach()
g.train()
g.to(device)
logp_net.to(device)
itr = 0
for epoch in range(args.n_epochs):
for x_d, _ in train_loader:
optimizer.zero_grad()
if args.dataset in TOY_DSETS:
x_d = toy_data.inf_train_gen(args.dataset, batch_size=args.batch_size)
x_d = torch.from_numpy(x_d).float().to(device)
else:
x_d = x_d.to(device)
x_init, h_init = sample_q(args.batch_size)
if args.hmc:
x, h = refine_q(x_init, h_init, args.n_steps, args.sgld_step)
else:
x, h = refine_q_hmc(x_init, h_init, args.n_steps, args.sgld_step)
ld = logp_fn(x_d)[:, 0]
lm = logp_fn(x.detach())[:, 0]
li = logp_fn(x_init.detach())[:, 0]
logp_obj = (ld - lm).mean()
logq_obj = logq_unnorm(x.detach(), h.detach()).mean()
loss = -(logp_obj + 3 * logq_obj) + args.p_control * (ld**2).mean()
loss.backward()
optimizer.step()
if itr % args.print_every == 0:
print("({}) | log p obj = {:.4f}, log q obj = {:.4f}, sigma = {:.4f} | log p(x_d) = {:.4f}, log p(x_m) = {:.4f}, log p(x_i) = {:.4f}".format(
itr, logp_obj.item(), logq_obj.item(), g.logsigma.exp().item(), ld.mean().item(), lm.mean().item(), li.mean().item()))
if itr % args.viz_every == 0:
if args.dataset in TOY_DSETS:
plt.clf()
xm = x.cpu().numpy()
xn = x_d.cpu().numpy()
xi = x_init.detach().cpu().numpy()
ax = plt.subplot(1, 5, 1, aspect="equal", title='refined')
ax.scatter(xm[:, 0], xm[:, 1], s=1)
ax = plt.subplot(1, 5, 2, aspect="equal", title='initial')
ax.scatter(xi[:, 0], xi[:, 1], s=1)
ax = plt.subplot(1, 5, 3, aspect="equal", title='data')
ax.scatter(xn[:, 0], xn[:, 1], s=1)
ax = plt.subplot(1, 5, 4, aspect="equal")
logp_net.cpu()
utils.plt_flow_density(logp_fn, ax, low=x_d.min().item(), high=x_d.max().item())
plt.savefig("/{}/{}.png".format(args.save_dir, itr))
logp_net.to(device)
ax = plt.subplot(1, 5, 5, aspect="equal")
logp_net.cpu()
utils.plt_flow_density(logp_fn, ax, low=x_d.min().item(), high=x_d.max().item(), exp=False)
plt.savefig("/{}/{}.png".format(args.save_dir, itr))
logp_net.to(device)
else:
plot("{}/init_{}.png".format(args.save_dir, itr), x_init.view(x_init.size(0), *args.data_size))
plot("{}/ref_{}.png".format(args.save_dir, itr), x.view(x.size(0), *args.data_size))
plot("{}/data_{}.png".format(args.save_dir, itr), x_d.view(x_d.size(0), *args.data_size))
itr += 1
def get_data(args):
if args.dataset in TOY_DSETS:
data, labels = skdatasets.make_moons(n_samples=10000, noise=.2)
data = torch.from_numpy(data).float()
labels = torch.from_numpy(labels).long()
dset = TensorDataset(data, labels)
dload = DataLoader(dset, args.batch_size, True, drop_last=True)
return dload, dload
elif args.dataset == "mnist":
tr_dataset = datasets.MNIST("./data",
# transform=transforms.Compose([transforms.ToTensor(), lambda x: x.view(-1)]),
transform=transforms.Compose([transforms.ToTensor(),
lambda x: (((255. * x) + torch.rand_like(x)) / 256.).view(-1)]),
download=True)
te_dataset = datasets.MNIST("./data", train=False,
transform=transforms.Compose([transforms.ToTensor(), lambda x: x.view(-1)]),
download=True)
tr_dload = DataLoader(tr_dataset, args.batch_size, True, drop_last=True)
te_dload = DataLoader(te_dataset, args.batch_size, False)
return tr_dload, te_dload
else:
raise NotImplementedError
if __name__ == "__main__":
parser = argparse.ArgumentParser("Energy Based Models and Shit")
#cifar
parser.add_argument("--dataset", type=str, default="circles")#, choices=["mnist", "moons", "circles"])
parser.add_argument("--data_root", type=str, default="../data")
# optimization
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--decay_epochs", nargs="+", type=int, default=[160, 180],
help="decay learning rate by decay_rate at these epochs")
parser.add_argument("--decay_rate", type=float, default=.3,
help="learning rate decay multiplier")
parser.add_argument("--labels_per_class", type=int, default=10,
help="number of labeled examples per class, if zero then use all labels")
parser.add_argument("--optimizer", choices=["adam", "sgd"], default="adam")
parser.add_argument("--batch_size", type=int, default=100)
parser.add_argument("--n_epochs", type=int, default=200)
parser.add_argument("--h_dim", type=int, default=100)
parser.add_argument("--noise_dim", type=int, default=2)
# loss weighting
parser.add_argument("--p_x_weight", type=float, default=1.)
parser.add_argument("--p_y_given_x_weight", type=float, default=1.)
# regularization
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--p_control", type=float, default=0.0)
# EBM specific
parser.add_argument("--n_steps", type=int, default=10,
help="number of steps of SGLD per iteration, 100 works for short-run, 20 works for PCD")
parser.add_argument("--sgld_step", type=float, default=.01)
# logging + evaluation
parser.add_argument("--save_dir", type=str, default='/tmp/')
parser.add_argument("--ckpt_every", type=int, default=10, help="Epochs between checkpoint save")
parser.add_argument("--eval_every", type=int, default=1, help="Epochs between evaluation")
parser.add_argument("--print_every", type=int, default=20, help="Iterations between print")
parser.add_argument("--viz_every", type=int, default=200, help="Iterations between print")
parser.add_argument("--load_path", type=str, default=None)
parser.add_argument("--n_valid", type=int, default=5000)
parser.add_argument("--semi-supervised", type=bool, default=False)
parser.add_argument("--vat", action="store_true", help="Run VAT instead of JEM")
parser.add_argument("--hmc", action="store_true", help="Run VAT instead of JEM")
args = parser.parse_args()
if args.dataset in TOY_DSETS:
args.data_dim = 2
elif args.dataset == "mnist":
args.data_dim = 784
args.data_size = (1, 28, 28)
main(args)