forked from wgrathwohl/JEM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_nn_ebm_exp.py
1616 lines (1410 loc) · 73.5 KB
/
train_nn_ebm_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import utils
import torch as t, torch.nn as nn, torch.nn.functional as tnnF, torch.distributions as tdist
from torch.utils.data import DataLoader, Dataset
import torchvision as tv, torchvision.transforms as tr
import os
import sys
import argparse
#import ipdb
import numpy as np
import wideresnet
import json
# Sampling
from tqdm import tqdm
t.backends.cudnn.benchmark = True
t.backends.cudnn.enabled = True
# seed = 1
# im_sz = 32
# n_ch = 3
from sklearn import datasets
import matplotlib.pyplot as plt
from vbnorm import VirtualBatchNormNN
# from batch_renormalization import BatchRenormalizationNN
from batchrenorm import BatchRenorm1d
from losses import VATLoss, LDSLoss, sliced_score_matching_vr, \
sliced_score_matching, denoising_score_matching
import toy_data
TOY_DSETS = ("moons", "circles", "8gaussians", "pinwheel", "2spirals", "checkerboard", "rings", "swissroll")
class DataSubset(Dataset):
def __init__(self, base_dataset, inds=None, size=-1):
self.base_dataset = base_dataset
if inds is None:
inds = np.random.choice(list(range(len(base_dataset))), size, replace=False)
self.inds = inds
def __getitem__(self, index):
base_ind = self.inds[index]
return self.base_dataset[base_ind]
def __len__(self):
return len(self.inds)
class Swish(nn.Module):
def __init__(self, dim=-1):
super(Swish, self).__init__()
if dim > 0:
self.beta = nn.Parameter(t.ones((dim,)))
else:
self.beta = t.ones((1,))
def forward(self, x):
if len(x.size()) == 2:
return x * t.sigmoid(self.beta[None, :] * x)
else:
return x * t.sigmoid(self.beta[None, :, None, None] * x)
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, extra_layers, use_vbnorm=False, ref_x=None, n_channels_in=1):
super(NeuralNet, self).__init__()
self.layers = nn.ModuleList()
self.use_vbnorm = use_vbnorm
self.n_channels_in = n_channels_in
affine = True
if args.no_param_bn:
affine = False
layer_in = nn.Linear(input_size * n_channels_in, hidden_size)
self.layers.append(layer_in)
self.ref_x = ref_x
if use_vbnorm:
assert ref_x is not None
self.layers.append(VirtualBatchNormNN(hidden_size))
# self.layers.append(BatchRenormalizationNN(hidden_size))
# self.layers.append(BatchRenorm1d(hidden_size))
elif args.batch_norm:
self.layers.append(nn.BatchNorm1d(num_features=hidden_size, affine=affine))
if args.swish:
self.layers.append(Swish(hidden_size))
elif args.softplus:
self.layers.append(nn.Softplus())
elif args.leaky_relu:
self.layers.append(nn.LeakyReLU())
else:
self.layers.append(nn.ReLU())
if args.dropout:
self.layers.append(nn.Dropout(p=0.5))
for i in range(extra_layers):
self.layers.append(nn.Linear(hidden_size, hidden_size))
if not args.first_layer_bn_only:
if use_vbnorm:
self.layers.append(VirtualBatchNormNN(hidden_size))
# self.layers.append(VirtualBatchNormNN(hidden_size))
# self.layers.append(BatchRenorm1d(hidden_size))
elif args.batch_norm:
self.layers.append(nn.BatchNorm1d(num_features=hidden_size, affine=affine))
if args.swish:
self.layers.append(Swish(hidden_size))
elif args.softplus:
self.layers.append(nn.Softplus())
elif args.leaky_relu:
self.layers.append(nn.LeakyReLU())
else:
self.layers.append(nn.ReLU())
if args.dropout:
self.layers.append(nn.Dropout(p=0.5))
# Note output layer not needed here because it is done in class F
def forward(self, x, y=None):
if args.vbnorm:
ref_x = self.ref_x
if len(ref_x.shape) > 2:
if self.n_channels_in > 1:
ref_x = ref_x.reshape(-1, ref_x.shape[-1] ** 2 * self.n_channels_in)
else:
ref_x = ref_x.reshape(-1, ref_x.shape[-1]**2)
if len(x.shape) > 2:
if self.n_channels_in > 1:
x = x.reshape(-1, x.shape[-1]**2 * self.n_channels_in)
else:
x = x.reshape(-1, x.shape[-1]**2)
for layer in self.layers:
if isinstance(layer, VirtualBatchNormNN):
assert ref_x is not None
ref_x, mean, mean_sq = layer(ref_x, None, None)
x, _, _ = layer(x, mean, mean_sq)
elif isinstance(layer, BatchRenorm1d) or isinstance(layer, nn.BatchNorm1d):
x = layer(x)
else: # now includes ReLU/activation functions
if args.vbnorm:
ref_x = layer(ref_x)
x = layer(x)
output = x
return output
def conv_lrelu_bn_block(channels, n_units, kernel, padding):
return nn.Sequential(
nn.Conv2d(channels, n_units, kernel, padding=padding),
nn.LeakyReLU(negative_slope=0.1),
nn.BatchNorm2d(num_features=n_units)
)
def conv_lrelu_block(channels, n_units, kernel, padding):
return nn.Sequential(
nn.Conv2d(channels, n_units, kernel, padding=padding),
nn.LeakyReLU(negative_slope=0.1)
)
def conv_swish_block(channels, n_units, kernel, padding):
return nn.Sequential(
nn.Conv2d(channels, n_units, kernel, padding=padding),
Swish(n_units)
)
class ConvLarge(nn.Module):
# Based on VAT paper, what they call "ConvLarge"
def __init__(self, avg_pool_kernel=6):
super(ConvLarge, self).__init__()
self.layers = nn.ModuleList()
if args.swish:
self.layers.append(conv_swish_block(args.n_ch, n_units=128, kernel=3,
padding=1))
self.layers.append(conv_swish_block(128, 128, kernel=3, padding=1))
self.layers.append(conv_swish_block(128, 128, kernel=3, padding=1))
self.layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
if not args.cnn_no_dropout:
self.layers.append(nn.Dropout2d(p=0.5))
self.layers.append(conv_swish_block(128, 256, kernel=3, padding=1))
self.layers.append(conv_swish_block(256, 256, kernel=3, padding=1))
self.layers.append(conv_swish_block(256, 256, kernel=3, padding=1))
self.layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
if not args.cnn_no_dropout:
self.layers.append(nn.Dropout2d(p=0.5))
self.layers.append(
conv_swish_block(256, 512, kernel=3, padding=0))
self.layers.append(
conv_swish_block(512, 256, kernel=1, padding=0))
self.layers.append(
conv_swish_block(256, 128, kernel=1, padding=0))
else:
if args.cnn_no_bn:
self.layers.append(conv_lrelu_block(args.n_ch, n_units=128, kernel=3,
padding=1))
self.layers.append(conv_lrelu_block(128, 128, kernel=3, padding=1))
self.layers.append(conv_lrelu_block(128, 128, kernel=3, padding=1))
else:
self.layers.append(conv_lrelu_bn_block(args.n_ch, n_units=128, kernel=3,
padding=1))
self.layers.append(conv_lrelu_bn_block(128, 128, kernel=3, padding=1))
self.layers.append(conv_lrelu_bn_block(128, 128, kernel=3, padding=1))
self.layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
if not args.cnn_no_dropout:
self.layers.append(nn.Dropout2d(p=0.5))
if args.cnn_no_bn:
self.layers.append(conv_lrelu_block(128, 256, kernel=3, padding=1))
self.layers.append(conv_lrelu_block(256, 256, kernel=3, padding=1))
self.layers.append(conv_lrelu_block(256, 256, kernel=3, padding=1))
else:
self.layers.append(conv_lrelu_bn_block(128, 256, kernel=3, padding=1))
self.layers.append(conv_lrelu_bn_block(256, 256, kernel=3, padding=1))
self.layers.append(conv_lrelu_bn_block(256, 256, kernel=3, padding=1))
self.layers.append(nn.MaxPool2d(kernel_size=2, stride=2))
if not args.cnn_no_dropout:
self.layers.append(nn.Dropout2d(p=0.5))
if args.cnn_no_bn:
self.layers.append(
conv_lrelu_block(256, 512, kernel=3, padding=0))
self.layers.append(
conv_lrelu_block(512, 256, kernel=1, padding=0))
self.layers.append(
conv_lrelu_block(256, 128, kernel=1, padding=0))
else:
self.layers.append(
conv_lrelu_bn_block(256, 512, kernel=3, padding=0))
self.layers.append(
conv_lrelu_bn_block(512, 256, kernel=1, padding=0))
self.layers.append(
conv_lrelu_bn_block(256, 128, kernel=1, padding=0))
self.layers.append(nn.AvgPool2d(kernel_size=avg_pool_kernel))
# nn.Linear(128, 10) No final linear, done in class F
self.layers = nn.Sequential(*self.layers)
def forward(self, x):
out = self.layers(x)
out = out.squeeze()
return out
class F(nn.Module):
def __init__(self, depth=28, width=2, norm=None, dropout_rate=0.0, im_sz=32, use_nn=False, input_size=None, n_classes=10, ref_x=None, use_cnn=False):
if input_size is not None:
assert use_nn == True #input size is for non-images, ie non-conv.
super(F, self).__init__()
if use_cnn:
print("Using ConvLarge")
self.f = ConvLarge(avg_pool_kernel=args.cnn_avg_pool_kernel)
self.f.last_dim = 128
elif use_nn:
hidden_units = args.nn_hidden_size
use_vbnorm = False
if args.vbnorm:
use_vbnorm = True
if input_size is None:
self.f = NeuralNet(im_sz**2, hidden_units, extra_layers=args.nn_extra_layers, use_vbnorm=use_vbnorm, ref_x=ref_x, n_channels_in=args.n_ch)
else:
self.f = NeuralNet(input_size, hidden_units, extra_layers=args.nn_extra_layers, use_vbnorm=use_vbnorm, ref_x=ref_x, n_channels_in=args.n_ch)
self.f.last_dim = hidden_units
else:
self.f = wideresnet.Wide_ResNet(depth, width, norm=norm, dropout_rate=dropout_rate, input_channels=args.n_ch)
self.energy_output = nn.Linear(self.f.last_dim, 1)
self.class_output = nn.Linear(self.f.last_dim, n_classes)
def forward(self, x, y=None):
penult_z = self.f(x)
return self.energy_output(penult_z).squeeze()
def penult(self, x):
penult_z = self.f(x)
return penult_z
def classify(self, x):
penult_z = self.f(x)
return self.class_output(penult_z).squeeze()
class CCF(F):
def __init__(self, depth=28, width=2, norm=None, dropout_rate=0.0, im_sz=32,
use_nn=False, input_size=None, n_classes=10, ref_x=None, use_cnn=False):
super(CCF, self).__init__(depth, width, norm=norm, dropout_rate=dropout_rate,
n_classes=n_classes, im_sz=im_sz, input_size=input_size,
use_nn=use_nn, ref_x=ref_x, use_cnn=use_cnn)
def forward(self, x, y=None):
logits = self.classify(x)
if y is None:
return logits.logsumexp(1)
else:
return t.gather(logits, 1, y[:, None])
def cond_entropy(logits):
probs = t.softmax(logits, dim=1)
# Use log softmax for stability.
return - t.sum(probs * t.log_softmax(logits, dim=1)) / probs.shape[0]
def cycle(loader):
while True:
for data in loader:
yield data
def grad_norm(m):
total_norm = 0
for p in m.parameters():
param_grad = p.grad
if param_grad is not None:
param_norm = param_grad.data.norm(2) ** 2
total_norm += param_norm
total_norm = total_norm ** (1. / 2)
return total_norm.item()
def grad_vals(m):
ps = []
for p in m.parameters():
if p.grad is not None:
ps.append(p.grad.data.view(-1))
ps = t.cat(ps)
return ps.mean().item(), ps.std(), ps.abs().mean(), ps.abs().std(), ps.abs().min(), ps.abs().max()
def init_random(args, bs):
if args.dataset == "moons":
out = t.FloatTensor(bs, args.input_size).uniform_(-1,1)
else:
out = t.FloatTensor(bs, args.n_ch, args.im_sz, args.im_sz).uniform_(-1, 1)
return out
def get_model_and_buffer(args, device, sample_q, ref_x=None):
model_cls = F if args.uncond else CCF
args.input_size = None
# if args.dataset == "mnist" or args.dataset == "moons":
# use_nn=False # testing only
if args.dataset == "mnist":
args.data_size = (1, 28, 28)
elif args.dataset == "svhn" or args.dataset == "cifar10":
args.data_dim = 32 * 32 * 3
args.data_size = (3, 32, 32)
if args.dataset == "moons":
args.input_size = 2
f = model_cls(args.depth, args.width, args.norm, dropout_rate=args.dropout_rate,
n_classes=args.n_classes, im_sz=args.im_sz, input_size=args.input_size,
use_nn=args.use_nn, ref_x=ref_x, use_cnn=args.use_cnn)
if not args.uncond:
assert args.buffer_size % args.n_classes == 0, "Buffer size must be divisible by args.n_classes"
if args.load_path is None:
# make replay buffer
replay_buffer = init_random(args, args.buffer_size)
else:
print(f"loading model from {args.load_path}")
ckpt_dict = t.load(args.load_path)
f.load_state_dict(ckpt_dict["model_state_dict"])
replay_buffer = ckpt_dict["replay_buffer"]
f = f.to(device)
if args.optim_sgld:
replay_buffer = nn.Parameter(replay_buffer)
return f, replay_buffer
def get_model_and_buffer_with_momentum(args, device, sample_q, ref_x=None):
f, replay_buffer = get_model_and_buffer(args, device, sample_q, ref_x)
momentum_buffer = t.zeros_like(replay_buffer)
return f, replay_buffer, momentum_buffer
def logit_transform(x, lamb = 0.05):
# Adapted from https://github.com/yookoon/VLAE
# x = (x * 255.0 + t.rand_like(x)) / 256.0 # noise
precision = args.dequant_precision
assert precision >= 2.0
x = (x * (precision - 1) + t.rand_like(x)) / precision # noise for smoothness
x = lamb + (1 - 2.0 * lamb) * x # clipping to avoid explosion at ends
x = t.log(x) - t.log(1.0 - x)
return x
def get_data(args):
if args.dataset == "svhn":
# if args.pgan:
# transform_train=tr.Compose([tr.ToTensor(),
# lambda x: (((255. * x) + t.rand_like(
# x)) / 256.),
# lambda x: 2 * x - 1])
#
if args.svhn_logit_transform:
transform_train = tr.Compose(
[tr.Pad(4),
tr.RandomCrop(args.im_sz),
tr.ToTensor(),
logit_transform,
lambda x: x + args.sigma * t.randn_like(x)
]
)
else:
transform_train = tr.Compose(
[tr.Pad(4, padding_mode="reflect"),
tr.RandomCrop(args.im_sz),
tr.ToTensor(),
tr.Normalize((.5, .5, .5), (.5, .5, .5)),
lambda x: x + args.sigma * t.randn_like(x)]
)
elif args.dataset == "mnist":
if args.pgan:
transform_train = tr.Compose([tr.ToTensor(),
lambda x: (((255. * x) + t.rand_like(
x)) / 256.)])
elif args.mnist_no_logit_transform:
transform_train = tr.Compose(
[
# tr.Pad(4),
# tr.RandomCrop(args.im_sz),
tr.ToTensor(),
# lambda x: x + args.mnist_sigma * t.randn_like(x)
]
)
elif args.mnist_no_crop:
transform_train = tr.Compose(
[
tr.ToTensor(),
logit_transform,
lambda x: x + args.mnist_sigma * t.randn_like(x)
]
)
else:
transform_train = tr.Compose(
[tr.Pad(4),
tr.RandomCrop(args.im_sz),
tr.ToTensor(),
logit_transform,
lambda x: x + args.mnist_sigma * t.randn_like(x)
]
)
elif args.dataset == "moons":
transform_train = None
else:
transform_train = tr.Compose(
[tr.Pad(4, padding_mode="reflect"),
tr.RandomCrop(args.im_sz),
tr.RandomHorizontalFlip(),
tr.ToTensor(),
tr.Normalize((.5, .5, .5), (.5, .5, .5)),
lambda x: x + args.sigma * t.randn_like(x)]
)
if args.dataset == "mnist":
if args.pgan:
transform_test = tr.Compose([tr.ToTensor(),])
elif args.mnist_no_logit_transform:
transform_test = tr.Compose(
[tr.ToTensor(),
# tr.Normalize((.5,), (.5,)),
# lambda x: x + args.sigma * t.randn_like(x)
# lambda x: x + args.mnist_sigma * t.randn_like(x)
]
)
elif args.mnist_no_crop:
transform_test = tr.Compose(
[tr.ToTensor(),
logit_transform,
]
)
else:
transform_test = tr.Compose(
[tr.ToTensor(),
# tr.Normalize((.5,), (.5,)),
# lambda x: x + args.sigma * t.randn_like(x)
logit_transform,
# lambda x: x + args.mnist_sigma * t.randn_like(x)
]
)
elif args.dataset == "moons":
transform_test = None
else:
transform_test = tr.Compose(
[tr.ToTensor(),
tr.Normalize((.5, .5, .5), (.5, .5, .5)),
lambda x: x + args.sigma * t.randn_like(x)]
)
def dataset_fn(train, transform):
if args.dataset == "cifar10":
return tv.datasets.CIFAR10(root=args.data_root, transform=transform, download=True, train=train)
elif args.dataset == "cifar100":
return tv.datasets.CIFAR100(root=args.data_root, transform=transform, download=True, train=train)
elif args.dataset == "mnist":
return tv.datasets.MNIST(root=args.data_root, transform=transform, download=True, train=train)
elif args.dataset == "moons":
data,labels = datasets.make_moons(n_samples=args.n_moons_data, noise=.1)
# plt.scatter(data[:,0],data[:,1])
# plt.show()
data = t.Tensor(data)
labels = t.Tensor(labels)
labels = labels.long()
return t.utils.data.TensorDataset(data, labels)
else:
return tv.datasets.SVHN(root=args.data_root, transform=transform, download=True,
split="train" if train else "test")
# get all training inds
full_train = dataset_fn(True, transform_train)
all_inds = list(range(len(full_train)))
# set seed
np.random.seed(args.dataset_seed)
# shuffle
np.random.shuffle(all_inds)
# seperate out validation set
if args.n_valid is not None:
valid_inds, train_inds = all_inds[:args.n_valid], all_inds[args.n_valid:]
else:
valid_inds, train_inds = [], all_inds
train_inds = np.array(train_inds)
train_labeled_inds = []
other_inds = []
train_labels = np.array([full_train[ind][1] for ind in train_inds])
if args.labels_per_class > 0:
for i in range(args.n_classes):
train_labeled_inds.extend(train_inds[train_labels == i][:args.labels_per_class])
other_inds.extend(train_inds[train_labels == i][args.labels_per_class:])
else:
train_labeled_inds = train_inds
dset_train = DataSubset(
dataset_fn(True, transform_train),
inds=train_inds)
dset_train_labeled = DataSubset(
dataset_fn(True, transform_train),
inds=train_labeled_inds)
dset_valid = DataSubset(
dataset_fn(True, transform_test),
inds=valid_inds)
dload_train = DataLoader(dset_train, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
dload_train_vbnorm = DataLoader(dset_train, batch_size=args.vbnorm_batch_size, shuffle=False, num_workers=4, drop_last=True)
dload_train_labeled = DataLoader(dset_train_labeled, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
dload_train_labeled = cycle(dload_train_labeled)
dload_train_labeled_static = DataLoader(dset_train_labeled, batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=True)
dload_train_labeled_static = cycle(dload_train_labeled_static)
dset_test = dataset_fn(False, transform_test)
dload_valid = DataLoader(dset_valid, batch_size=100, shuffle=False, num_workers=4, drop_last=False)
dload_test = DataLoader(dset_test, batch_size=100, shuffle=False, num_workers=4, drop_last=False)
return dload_train, dload_train_labeled, dload_valid,dload_test, dset_train, dset_train_labeled, dload_train_labeled_static, dload_train_vbnorm
def get_sample_q(args, device):
def sample_p_0(replay_buffer, bs, y=None, momentum_buffer=None, data=None):
if len(replay_buffer) == 0:
return init_random(args, bs), []
buffer_size = len(replay_buffer) if y is None else len(replay_buffer) // args.n_classes
inds = t.randint(0, buffer_size, (bs,))
# if cond, convert inds to class conditional inds
if y is not None:
inds = y.cpu() * buffer_size + inds
assert not args.uncond, "Can't drawn conditional samples without giving me y"
buffer_samples = replay_buffer[inds]
random_samples = init_random(args, bs)
if args.dataset == "moons":
choose_random = (t.rand(bs) < args.reinit_freq).float()[:, None]
else:
choose_random = (t.rand(bs) < args.reinit_freq).float()[:, None, None, None]
if args.buffer_reinit_from_data:
assert data is not None
samples = choose_random * data.cpu() + (1 - choose_random) * buffer_samples
else:
samples = choose_random * random_samples + (1 - choose_random) * buffer_samples
if momentum_buffer is not None:
momentum_buffer[inds] *= (1-choose_random) # Reset momentum to 0 when resetting data, keep as before if choosing buffer sample
return samples.to(device), inds
def sample_q(f, replay_buffer, y=None, n_steps=args.n_steps, seed_batch=None,
optim_sgld=None, momentum_buffer=None, data=None):
"""this func takes in replay_buffer now so we have the option to sample from
scratch (i.e. replay_buffer==[]). See test_wrn_ebm.py for example.
"""
f.eval()
# get batch size
bs = args.batch_size if y is None else y.size(0)
# generate initial samples and buffer inds of those samples (if buffer is used)
if seed_batch is not None:
init_sample, buffer_inds = seed_batch, []
else:
init_sample, buffer_inds = sample_p_0(replay_buffer, bs=bs, y=y,
momentum_buffer=momentum_buffer, data=data)
x_k = t.autograd.Variable(init_sample, requires_grad=True)
# sgld
if momentum_buffer is not None:
momentum = momentum_buffer[buffer_inds].to(device)
for k in range(n_steps):
f_prime = t.autograd.grad(f(x_k, y=y).sum(), [x_k], retain_graph=True)[0]
# print(t.sum(t.abs(f_prime)))
# Note f_prime is log sum exp whereas our energy function is neg log sum exp
# So the reason our steps were positive before was it was minus a negative
neg_f_prime = -f_prime
# This negative f prime is the gradient of the energy function, which we are taking steps
# in descent with respect to.
# x_k.data += args.sgld_lr * f_prime + args.sgld_std * t.randn_like(x_k)
if momentum_buffer is not None:
# Modification to usual momentum to "conserve energy" which should help for sampling
momentum = (args.sgld_momentum * momentum + (1-args.sgld_momentum) * f_prime)
x_k.data += args.sgld_lr * momentum
# No noise with momentum right now but can do so if we want by
# unindenting the line 3 lines below
else:
# old = x_k.data + 0.0 # +0.0 breaks a reference, so it's now a copy instead of a reference
# new = x_k.data + args.sgld_lr * f_prime
x_k.data += args.sgld_lr * f_prime
# print("---")
# print(args.sgld_lr * f_prime)
# print(x_k.data)
# new2 = x_k.data
# print(t.sum(t.abs(args.sgld_lr * f_prime)))
# print(t.sum(t.abs(old)-t.abs(new)))
# print(t.sum(t.abs(old)-t.abs(new2)))
x_k.data += args.sgld_std * t.randn_like(x_k)
f.train()
if args.optim_sgld:
final_samples = replay_buffer[buffer_inds].to(device).detach()
else:
final_samples = x_k.detach()
if momentum_buffer is not None:
momentum_buffer[buffer_inds] = momentum.cpu()
# update replay buffer
if seed_batch is None:
# Only update replay buffer in PCD (CD = use seed batch at data)
# Just detaching functionality for now
if len(replay_buffer) > 0:
if args.optim_sgld:
replay_buffer[buffer_inds].data = final_samples.cpu()
else:
replay_buffer[buffer_inds] = final_samples.cpu()
return final_samples
return sample_q
def eval_classification(f, dload, device):
corrects, losses = [], []
for x_p_d, y_p_d in dload:
x_p_d, y_p_d = x_p_d.to(device), y_p_d.to(device)
logits = f.classify(x_p_d)
loss = nn.CrossEntropyLoss(reduce=False)(logits, y_p_d).cpu().numpy()
losses.extend(loss)
correct = (logits.max(1)[1] == y_p_d).float().cpu().numpy()
corrects.extend(correct)
loss = np.mean(losses)
correct = np.mean(corrects)
return correct, loss
def checkpoint(f, buffer, tag, args, device):
f.cpu()
ckpt_dict = {
"model_state_dict": f.state_dict(),
"replay_buffer": buffer
}
t.save(ckpt_dict, os.path.join(args.save_dir, tag))
f.to(device)
def plot_jacobian_spectrum(x_samples, f, epoch, use_penult=False):
# Let's just do 1 example for now
# input_ex_ind = 0
# x_example = x_lab[input_ex_ind]
for c in range(args.n_classes):
x_example = x_samples[c]
x_example.requires_grad = True
j_list = []
f.eval()
# Is the below Jacobian calculation vectorizable?
dim = args.n_classes
if use_penult:
dim = f.penult(x_example).squeeze().shape[0]
penult_plot_num = 20
for i in range(dim):
if use_penult:
grad = t.autograd.grad(f.penult(x_example).squeeze()[i],
x_example)[0]
else:
grad = t.autograd.grad(f.classify(x_example)[i],
x_example)[0]
grad = grad.reshape(-1)
j_list.append(grad)
f.train()
jacobian = t.stack(j_list)
u, s, v = t.svd(jacobian)
# print(s)
spectrum = s.detach().cpu().numpy()
if use_penult:
plt.scatter(np.arange(0, penult_plot_num), spectrum[0:penult_plot_num])
fig_name = "spectrum_digit{}_epoch{}_penult".format(c, epoch)
else:
plt.scatter(np.arange(0, args.n_classes), spectrum)
fig_name = "spectrum_digit{}_epoch{}".format(c, epoch)
plt.savefig(fig_name)
# plt.show()
plt.close()
def main(args):
utils.makedirs(args.save_dir)
with open(f'{args.save_dir}/params.txt', 'w') as f:
json.dump(args.__dict__, f)
if args.print_to_log:
sys.stdout = open(f'{args.save_dir}/log.txt', 'w')
t.manual_seed(args.t_seed)
if t.cuda.is_available():
t.cuda.manual_seed_all(args.t_seed)
if args.dataset == "mnist":
args.n_ch = 1
args.im_sz = 28
elif args.dataset == "moons":
args.n_ch = None
args.im_sz = None
else:
args.n_ch = 3
args.im_sz = 32
# datasets
dload_train, dload_train_labeled, dload_valid, dload_test, dset_train, \
dset_train_labeled, dload_train_labeled_static, dload_train_vbnorm = get_data(args)
device = t.device('cuda' if t.cuda.is_available() else 'cpu')
ref_x = None
if args.vbnorm:
ref_x = next(iter(dload_train_vbnorm))[0].to(device)
sample_q = get_sample_q(args, device)
momentum_buffer = None
if args.use_sgld_momentum:
f, replay_buffer, momentum_buffer = get_model_and_buffer_with_momentum(args, device, sample_q, ref_x)
else:
f, replay_buffer = get_model_and_buffer(args, device, sample_q, ref_x)
sqrt = lambda x: int(t.sqrt(t.Tensor([x])))
plot = lambda p, x: tv.utils.save_image(t.clamp(x, -1, 1), p, normalize=True, nrow=sqrt(x.size(0)))
if args.pgan:
from train_pgan_ebm_simple import get_models, brute_force_jac, condition_number
from train_pgan_ebm_simple import get_data as pgan_get_data
import hmc
data_sgld_dir = "{}/{}".format(args.save_dir, "data_sgld")
utils.makedirs(data_sgld_dir)
gen_sgld_dir = "{}/{}".format(args.save_dir, "generator_sgld")
utils.makedirs(gen_sgld_dir)
z_sgld_dir = "{}/{}".format(args.save_dir, "z_only_sgld")
utils.makedirs(z_sgld_dir)
data_sgld_chain_dir = "{}/{}_chain".format(args.save_dir,
"data_sgld_chain")
utils.makedirs(data_sgld_chain_dir)
gen_sgld_chain_dir = "{}/{}_chain".format(args.save_dir,
"generator_sgld_chain")
utils.makedirs(gen_sgld_chain_dir)
z_sgld_chain_dir = "{}/{}_chain".format(args.save_dir,
"z_only_sgld_chain")
utils.makedirs(z_sgld_chain_dir)
logp_net, g = get_models(args)
e_optimizer = t.optim.Adam(logp_net.parameters(), lr=args.lr,
betas=[0., .9],
weight_decay=args.weight_decay)
g_optimizer = t.optim.Adam(g.parameters(), lr=args.lr / 1,
betas=[0., .9],
weight_decay=args.weight_decay)
# pgan_train_loader, pgan_test_loader, plot = pgan_get_data(args)
# pgan_train_loader = cycle(pgan_train_loader)
def sample_q_pgan(n, requires_grad=False):
h = t.randn((n, args.noise_dim)).to(device)
if requires_grad:
h.requires_grad_()
x_mu = g.generator(h)
x = x_mu + t.randn_like(x_mu) * g.logsigma.exp()
return x, h
def logq_joint(x, h):
logph = tdist.Normal(0, 1).log_prob(h).sum(1)
px_given_h = tdist.Normal(g.generator(h), g.logsigma.exp())
logpx_given_h = px_given_h.log_prob(x).flatten(start_dim=1).sum(1)
return logpx_given_h + logph
g.train()
g.to(device)
logp_net.train()
logp_net.to(device)
pgan_itr = 0
# def logp_fn(x):
# if len(x.shape) > 2:
# x = x.reshape(-1, x.shape[-1] ** 2)
# return logp_net(x)
args.pgan_stepsize = 1. / args.noise_dim
args.pgan_sgld_lr = 1. / args.noise_dim
args.pgan_sgld_lr_z = 1. / args.noise_dim
args.pgan_sgld_lr_zne = 1. / args.noise_dim
# TODO
# Ok first try and just get it running
# THen try 0 steps, 1 step, etc. A few different configs.
def pgan_optimize_and_get_sample(itr, x_d):
if args.dataset in TOY_DSETS:
x_d = toy_data.inf_train_gen(args.dataset,
batch_size=args.batch_size)
x_d = t.from_numpy(x_d).float().to(device)
else:
x_d = x_d.to(device)
# sample from q(x, h)
x_g, h_g = sample_q_pgan(args.batch_size)
x_g_ref = x_g
# ebm obj
ld = logp_net(x_d).squeeze()
lg_detach = logp_net(x_g_ref.detach()).squeeze()
logp_obj = (ld - lg_detach).mean()
e_loss = -logp_obj + (ld ** 2).mean() * args.p_control
if itr % args.e_iters == 0:
e_optimizer.zero_grad()
e_loss.backward()
e_optimizer.step()
# gen obj
lg = logp_net(x_g).squeeze()
if args.gp == 0:
if args.my_single_sample:
logq = logq_joint(x_g.detach(), h_g.detach())
# mine
logq_obj = lg.mean() - args.ent_weight * logq.mean()
g_error_entropy = -logq.mean()
elif args.adji_single_sample:
# adji
mean_output_summed = g.generator(h_g)
c = ((
x_g - mean_output_summed) / g.logsigma.exp() ** 2).detach()
g_error_entropy = t.mul(c, x_g).mean(0).sum()
logq_obj = lg.mean() + args.ent_weight * g_error_entropy
else:
num_samples_posterior = 2
h_given_x, acceptRate, args.pgan_stepsize = hmc.get_gen_posterior_samples(
g.generator, x_g.detach(), h_g.clone(),
g.logsigma.exp().detach(), burn_in=2,
num_samples_posterior=num_samples_posterior,
leapfrog_steps=5, stepsize=args.pgan_stepsize, flag_adapt=1,
hmc_learning_rate=.02, hmc_opt_accept=.67)
mean_output_summed = t.zeros_like(x_g)
mean_output = g.generator(h_given_x)
# for h in [h_g, h_given_x]:
for cnt in range(num_samples_posterior):
mean_output_summed = mean_output_summed + mean_output[
cnt * args.batch_size:(
cnt + 1) * args.batch_size]
mean_output_summed = mean_output_summed / num_samples_posterior
c = ((
x_g - mean_output_summed) / g.logsigma.exp() ** 2).detach()
g_error_entropy = t.mul(c, x_g).mean(0).sum()
logq_obj = lg.mean() + args.ent_weight * g_error_entropy
else:
x_g, h_g = sample_q_pgan(args.batch_size, requires_grad=True)
if args.brute_force:
jac = t.zeros(
(x_g.size(0), x_g.size(1), h_g.size(1)))
j = t.autograd.grad(x_g[:, 0].sum(), h_g,
retain_graph=True)[0]
jac[:, 0, :] = j
j = t.autograd.grad(x_g[:, 1].sum(), h_g,
retain_graph=True)[0]
jac[:, 1, :] = j
u, s, v = t.svd(jac)
logs = s.log()
logpx = 0 - logs.sum(1)
g_error_entropy = logpx.mean()
logq_obj = lg.mean() - args.ent_weight * logpx.mean()
else:
eps = t.randn_like(x_g)
epsJ = t.autograd.grad(x_g, h_g, grad_outputs=eps,
retain_graph=True)[0]
# eps2 = torch.randn_like(x_g)
# epsJ2 = torch.autograd.grad(x_g, h_g, grad_outputs=eps2, retain_graph=True)[0]
epsJtJeps = (epsJ * epsJ).sum(1)
g_error_entropy = ((epsJtJeps - args.gp) ** 2).mean()
logq_obj = lg.mean() - args.ent_weight * g_error_entropy
g_loss = -logq_obj
g_optimizer.zero_grad()
g_loss.backward()
g_optimizer.step()
if args.clamp:
g.logsigma.data.clamp_(np.log(.01), np.log(.0101))
else:
g.logsigma.data.clamp_(np.log(.01), np.log(.3))
if itr % args.print_every == 0:
print(
"({}) | log p obj = {:.4f}, log q obj = {:.4f}, sigma = {:.4f} | "
"log p(x_d) = {:.4f}, log p(x_m) = {:.4f}, ent = {:.4f} | "
"sgld_lr = {}, sgld_lr_z = {}, sgld_lr_zne = {} | stepsize = {}".format(
itr, logp_obj.item(), logq_obj.item(),
g.logsigma.exp().item(),
ld.mean().item(), lg_detach.mean().item(),
g_error_entropy.item(),
args.pgan_sgld_lr, args.pgan_sgld_lr_z, args.pgan_sgld_lr_zne, args.pgan_stepsize))
if itr % args.viz_every == 0:
if args.dataset in TOY_DSETS:
plt.clf()
xg = x_g_ref.detach().cpu().numpy()
xd = x_d.cpu().numpy()
ax = plt.subplot(1, 4, 1, aspect="equal",
title='refined')
ax.scatter(xg[:, 0], xg[:, 1], s=1)
ax = plt.subplot(1, 4, 2, aspect="equal", title='data')
ax.scatter(xd[:, 0], xd[:, 1], s=1)
ax = plt.subplot(1, 4, 3, aspect="equal")
logp_net.cpu()
utils.plt_flow_density(logp_net, ax,
low=x_d.min().item(),
high=x_d.max().item())
plt.savefig("{}/{}.png".format(args.save_dir, itr))
logp_net.to(device)
ax = plt.subplot(1, 4, 4, aspect="equal")
logp_net.cpu()
utils.plt_flow_density(logp_net, ax,
low=x_d.min().item(),
high=x_d.max().item(), exp=False)
plt.savefig("{}/{}.png".format(args.save_dir, itr))
logp_net.to(device)
x_g, h_g = sample_q_pgan(args.batch_size, requires_grad=True)
jac = t.zeros(
(x_g.size(0), x_g.size(1), h_g.size(1)))
j = t.autograd.grad(x_g[:, 0].sum(), h_g,
retain_graph=True)[0]
jac[:, 0, :] = j
j = t.autograd.grad(x_g[:, 1].sum(), h_g,
retain_graph=True)[0]
jac[:, 1, :] = j
u, s, v = t.svd(jac)
s1, s2 = s[:, 0].detach(), s[:, 1].detach()
plt.clf()
plt.hist(s1.numpy(), alpha=.75)
plt.hist(s2.numpy(), alpha=.75)
plt.savefig("{}/{}_svd.png".format(args.save_dir, itr))