forked from wgrathwohl/JEM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_wrn_ebm.py
455 lines (395 loc) · 19.6 KB
/
train_wrn_ebm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import utils
import torch as t, torch.nn as nn, torch.nn.functional as tnnF, torch.distributions as tdist
from torch.utils.data import DataLoader, Dataset
import torchvision as tv, torchvision.transforms as tr
import os
import sys
import argparse
#import ipdb
import numpy as np
import wideresnet
import json
# Sampling
from tqdm import tqdm
t.backends.cudnn.benchmark = True
t.backends.cudnn.enabled = True
seed = 1
im_sz = 32
n_ch = 3
class DataSubset(Dataset):
def __init__(self, base_dataset, inds=None, size=-1):
self.base_dataset = base_dataset
if inds is None:
inds = np.random.choice(list(range(len(base_dataset))), size, replace=False)
self.inds = inds
def __getitem__(self, index):
base_ind = self.inds[index]
return self.base_dataset[base_ind]
def __len__(self):
return len(self.inds)
class F(nn.Module):
def __init__(self, depth=28, width=2, norm=None, dropout_rate=0.0, n_classes=10):
super(F, self).__init__()
self.f = wideresnet.Wide_ResNet(depth, width, norm=norm, dropout_rate=dropout_rate)
self.energy_output = nn.Linear(self.f.last_dim, 1)
self.class_output = nn.Linear(self.f.last_dim, n_classes)
def forward(self, x, y=None):
penult_z = self.f(x)
return self.energy_output(penult_z).squeeze()
def classify(self, x):
penult_z = self.f(x)
return self.class_output(penult_z).squeeze()
class CCF(F):
def __init__(self, depth=28, width=2, norm=None, dropout_rate=0.0, n_classes=10):
super(CCF, self).__init__(depth, width, norm=norm, dropout_rate=dropout_rate, n_classes=n_classes)
def forward(self, x, y=None):
logits = self.classify(x)
if y is None:
return logits.logsumexp(1)
else:
return t.gather(logits, 1, y[:, None])
def cycle(loader):
while True:
for data in loader:
yield data
def grad_norm(m):
total_norm = 0
for p in m.parameters():
param_grad = p.grad
if param_grad is not None:
param_norm = param_grad.data.norm(2) ** 2
total_norm += param_norm
total_norm = total_norm ** (1. / 2)
return total_norm.item()
def grad_vals(m):
ps = []
for p in m.parameters():
if p.grad is not None:
ps.append(p.grad.data.view(-1))
ps = t.cat(ps)
return ps.mean().item(), ps.std(), ps.abs().mean(), ps.abs().std(), ps.abs().min(), ps.abs().max()
def init_random(args, bs):
return t.FloatTensor(bs, n_ch, im_sz, im_sz).uniform_(-1, 1)
def get_model_and_buffer(args, device, sample_q):
model_cls = F if args.uncond else CCF
f = model_cls(args.depth, args.width, args.norm, dropout_rate=args.dropout_rate, n_classes=args.n_classes)
if not args.uncond:
assert args.buffer_size % args.n_classes == 0, "Buffer size must be divisible by args.n_classes"
if args.load_path is None:
# make replay buffer
replay_buffer = init_random(args, args.buffer_size)
else:
print(f"loading model from {args.load_path}")
ckpt_dict = t.load(args.load_path)
f.load_state_dict(ckpt_dict["model_state_dict"])
replay_buffer = ckpt_dict["replay_buffer"]
f = f.to(device)
return f, replay_buffer
def get_data(args):
if args.dataset == "svhn":
transform_train = tr.Compose(
[tr.Pad(4, padding_mode="reflect"),
tr.RandomCrop(im_sz),
tr.ToTensor(),
tr.Normalize((.5, .5, .5), (.5, .5, .5)),
lambda x: x + args.sigma * t.randn_like(x)]
)
else:
transform_train = tr.Compose(
[tr.Pad(4, padding_mode="reflect"),
tr.RandomCrop(im_sz),
tr.RandomHorizontalFlip(),
tr.ToTensor(),
tr.Normalize((.5, .5, .5), (.5, .5, .5)),
lambda x: x + args.sigma * t.randn_like(x)]
)
transform_test = tr.Compose(
[tr.ToTensor(),
tr.Normalize((.5, .5, .5), (.5, .5, .5)),
lambda x: x + args.sigma * t.randn_like(x)]
)
def dataset_fn(train, transform):
if args.dataset == "cifar10":
return tv.datasets.CIFAR10(root=args.data_root, transform=transform, download=True, train=train)
elif args.dataset == "cifar100":
return tv.datasets.CIFAR100(root=args.data_root, transform=transform, download=True, train=train)
else:
return tv.datasets.SVHN(root=args.data_root, transform=transform, download=True,
split="train" if train else "test")
# get all training inds
full_train = dataset_fn(True, transform_train)
all_inds = list(range(len(full_train)))
# set seed
np.random.seed(1234)
# shuffle
np.random.shuffle(all_inds)
# seperate out validation set
if args.n_valid is not None:
valid_inds, train_inds = all_inds[:args.n_valid], all_inds[args.n_valid:]
else:
valid_inds, train_inds = [], all_inds
train_inds = np.array(train_inds)
train_labeled_inds = []
other_inds = []
train_labels = np.array([full_train[ind][1] for ind in train_inds])
if args.labels_per_class > 0:
for i in range(args.n_classes):
print(i)
train_labeled_inds.extend(train_inds[train_labels == i][:args.labels_per_class])
other_inds.extend(train_inds[train_labels == i][args.labels_per_class:])
else:
train_labeled_inds = train_inds
dset_train = DataSubset(
dataset_fn(True, transform_train),
inds=train_inds)
dset_train_labeled = DataSubset(
dataset_fn(True, transform_train),
inds=train_labeled_inds)
dset_valid = DataSubset(
dataset_fn(True, transform_test),
inds=valid_inds)
dload_train = DataLoader(dset_train, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
dload_train_labeled = DataLoader(dset_train_labeled, batch_size=args.batch_size, shuffle=True, num_workers=4, drop_last=True)
dload_train_labeled = cycle(dload_train_labeled)
dset_test = dataset_fn(False, transform_test)
dload_valid = DataLoader(dset_valid, batch_size=100, shuffle=False, num_workers=4, drop_last=False)
dload_test = DataLoader(dset_test, batch_size=100, shuffle=False, num_workers=4, drop_last=False)
return dload_train, dload_train_labeled, dload_valid,dload_test
def get_sample_q(args, device):
def sample_p_0(replay_buffer, bs, y=None):
if len(replay_buffer) == 0:
return init_random(args, bs), []
buffer_size = len(replay_buffer) if y is None else len(replay_buffer) // args.n_classes
inds = t.randint(0, buffer_size, (bs,))
# if cond, convert inds to class conditional inds
if y is not None:
inds = y.cpu() * buffer_size + inds
assert not args.uncond, "Can't drawn conditional samples without giving me y"
buffer_samples = replay_buffer[inds]
random_samples = init_random(args, bs)
choose_random = (t.rand(bs) < args.reinit_freq).float()[:, None, None, None]
samples = choose_random * random_samples + (1 - choose_random) * buffer_samples
return samples.to(device), inds
def sample_q(f, replay_buffer, y=None, n_steps=args.n_steps):
"""this func takes in replay_buffer now so we have the option to sample from
scratch (i.e. replay_buffer==[]). See test_wrn_ebm.py for example.
"""
f.eval()
# get batch size
bs = args.batch_size if y is None else y.size(0)
# generate initial samples and buffer inds of those samples (if buffer is used)
init_sample, buffer_inds = sample_p_0(replay_buffer, bs=bs, y=y)
x_k = t.autograd.Variable(init_sample, requires_grad=True)
# sgld
for k in range(n_steps):
f_prime = t.autograd.grad(f(x_k, y=y).sum(), [x_k], retain_graph=True)[0]
x_k.data += args.sgld_lr * f_prime + args.sgld_std * t.randn_like(x_k)
f.train()
final_samples = x_k.detach()
# update replay buffer
if len(replay_buffer) > 0:
replay_buffer[buffer_inds] = final_samples.cpu()
return final_samples
return sample_q
def eval_classification(f, dload, device):
corrects, losses = [], []
for x_p_d, y_p_d in dload:
x_p_d, y_p_d = x_p_d.to(device), y_p_d.to(device)
logits = f.classify(x_p_d)
loss = nn.CrossEntropyLoss(reduce=False)(logits, y_p_d).cpu().numpy()
losses.extend(loss)
correct = (logits.max(1)[1] == y_p_d).float().cpu().numpy()
corrects.extend(correct)
loss = np.mean(losses)
correct = np.mean(corrects)
return correct, loss
def checkpoint(f, buffer, tag, args, device):
f.cpu()
ckpt_dict = {
"model_state_dict": f.state_dict(),
"replay_buffer": buffer
}
t.save(ckpt_dict, os.path.join(args.save_dir, tag))
f.to(device)
def main(args):
utils.makedirs(args.save_dir)
with open(f'{args.save_dir}/params.txt', 'w') as f:
json.dump(args.__dict__, f)
if args.print_to_log:
sys.stdout = open(f'{args.save_dir}/log.txt', 'w')
t.manual_seed(seed)
if t.cuda.is_available():
t.cuda.manual_seed_all(seed)
# datasets
dload_train, dload_train_labeled, dload_valid, dload_test = get_data(args)
device = t.device('cuda' if t.cuda.is_available() else 'cpu')
sample_q = get_sample_q(args, device)
f, replay_buffer = get_model_and_buffer(args, device, sample_q)
sqrt = lambda x: int(t.sqrt(t.Tensor([x])))
plot = lambda p, x: tv.utils.save_image(t.clamp(x, -1, 1), p, normalize=True, nrow=sqrt(x.size(0)))
# optimizer
params = f.class_output.parameters() if args.clf_only else f.parameters()
if args.optimizer == "adam":
optim = t.optim.Adam(params, lr=args.lr, betas=[.9, .999], weight_decay=args.weight_decay)
else:
optim = t.optim.SGD(params, lr=args.lr, momentum=.9, weight_decay=args.weight_decay)
best_valid_acc = 0.0
cur_iter = 0
for epoch in range(args.n_epochs):
if epoch in args.decay_epochs:
for param_group in optim.param_groups:
new_lr = param_group['lr'] * args.decay_rate
param_group['lr'] = new_lr
print("Decaying lr to {}".format(new_lr))
for i, (x_p_d, _) in tqdm(enumerate(dload_train)):
if cur_iter <= args.warmup_iters:
lr = args.lr * cur_iter / float(args.warmup_iters)
for param_group in optim.param_groups:
param_group['lr'] = lr
x_p_d = x_p_d.to(device)
x_lab, y_lab = dload_train_labeled.__next__()
x_lab, y_lab = x_lab.to(device), y_lab.to(device)
L = 0.
if args.p_x_weight > 0: # maximize log p(x)
if args.class_cond_p_x_sample:
assert not args.uncond, "can only draw class-conditional samples if EBM is class-cond"
y_q = t.randint(0, args.n_classes, (args.batch_size,)).to(device)
x_q = sample_q(f, replay_buffer, y=y_q)
else:
x_q = sample_q(f, replay_buffer) # sample from log-sumexp
fp_all = f(x_p_d)
fq_all = f(x_q)
fp = fp_all.mean()
fq = fq_all.mean()
l_p_x = -(fp - fq)
if cur_iter % args.print_every == 0:
print('P(x) | {}:{:>d} f(x_p_d)={:>14.9f} f(x_q)={:>14.9f} d={:>14.9f}'.format(epoch, i, fp, fq,
fp - fq))
L += args.p_x_weight * l_p_x
if args.p_y_given_x_weight > 0: # maximize log p(y | x)
logits = f.classify(x_lab)
l_p_y_given_x = nn.CrossEntropyLoss()(logits, y_lab)
if cur_iter % args.print_every == 0:
acc = (logits.max(1)[1] == y_lab).float().mean()
print('P(y|x) {}:{:>d} loss={:>14.9f}, acc={:>14.9f}'.format(epoch,
cur_iter,
l_p_y_given_x.item(),
acc.item()))
L += args.p_y_given_x_weight * l_p_y_given_x
if args.p_x_y_weight > 0: # maximize log p(x, y)
assert not args.uncond, "this objective can only be trained for class-conditional EBM DUUUUUUUUHHHH!!!"
x_q_lab = sample_q(f, replay_buffer, y=y_lab)
fp, fq = f(x_lab, y_lab).mean(), f(x_q_lab, y_lab).mean()
l_p_x_y = -(fp - fq)
if cur_iter % args.print_every == 0:
print('P(x, y) | {}:{:>d} f(x_p_d)={:>14.9f} f(x_q)={:>14.9f} d={:>14.9f}'.format(epoch, i, fp, fq,
fp - fq))
L += args.p_x_y_weight * l_p_x_y
# break if the loss diverged...easier for poppa to run experiments this way
if L.abs().item() > 1e8:
print("BAD BOIIIIIIIIII")
1/0
optim.zero_grad()
L.backward()
optim.step()
cur_iter += 1
if cur_iter % 100 == 0:
if args.plot_uncond:
if args.class_cond_p_x_sample:
assert not args.uncond, "can only draw class-conditional samples if EBM is class-cond"
y_q = t.randint(0, args.n_classes, (args.batch_size,)).to(device)
x_q = sample_q(f, replay_buffer, y=y_q)
else:
x_q = sample_q(f, replay_buffer)
plot('{}/x_q_{}_{:>06d}.png'.format(args.save_dir, epoch, i), x_q)
if args.plot_cond: # generate class-conditional samples
y = t.arange(0, args.n_classes)[None].repeat(args.n_classes, 1).transpose(1, 0).contiguous().view(-1).to(device)
x_q_y = sample_q(f, replay_buffer, y=y)
plot('{}/x_q_y{}_{:>06d}.png'.format(args.save_dir, epoch, i), x_q_y)
if epoch % args.ckpt_every == 0:
checkpoint(f, replay_buffer, f'ckpt_{epoch}.pt', args, device)
if epoch % args.eval_every == 0 and (args.p_y_given_x_weight > 0 or args.p_x_y_weight > 0):
f.eval()
with t.no_grad():
# validation set
correct, loss = eval_classification(f, dload_valid, device)
print("Epoch {}: Valid Loss {}, Valid Acc {}".format(epoch, loss, correct))
if correct > best_valid_acc:
best_valid_acc = correct
print("Best Valid!: {}".format(correct))
checkpoint(f, replay_buffer, "best_valid_ckpt.pt", args, device)
# test set
correct, loss = eval_classification(f, dload_test, device)
print("Epoch {}: Test Loss {}, Test Acc {}".format(epoch, loss, correct))
f.train()
checkpoint(f, replay_buffer, "last_ckpt.pt", args, device)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Energy Based Models and Shit")
parser.add_argument("--dataset", type=str, default="cifar10", choices=["cifar10", "svhn", "cifar100"])
parser.add_argument("--data_root", type=str, default="../data")
# optimization
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--decay_epochs", nargs="+", type=int, default=[160, 180],
help="decay learning rate by decay_rate at these epochs")
parser.add_argument("--decay_rate", type=float, default=.3,
help="learning rate decay multiplier")
parser.add_argument("--clf_only", action="store_true", help="If set, then only train the classifier")
parser.add_argument("--labels_per_class", type=int, default=-1,
help="number of labeled examples per class, if zero then use all labels")
parser.add_argument("--optimizer", choices=["adam", "sgd"], default="adam")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--n_epochs", type=int, default=200)
parser.add_argument("--warmup_iters", type=int, default=-1,
help="number of iters to linearly increase learning rate, if -1 then no warmmup")
# loss weighting
parser.add_argument("--p_x_weight", type=float, default=1.)
parser.add_argument("--p_y_given_x_weight", type=float, default=1.)
parser.add_argument("--p_x_y_weight", type=float, default=0.)
# regularization
parser.add_argument("--dropout_rate", type=float, default=0.0)
parser.add_argument("--sigma", type=float, default=3e-2,
help="stddev of gaussian noise to add to input, .03 works but .1 is more stable")
parser.add_argument("--weight_decay", type=float, default=0.0)
# network
parser.add_argument("--norm", type=str, default=None, choices=[None, "norm", "batch", "instance", "layer", "act"],
help="norm to add to weights, none works fine")
# EBM specific
parser.add_argument("--n_steps", type=int, default=20,
help="number of steps of SGLD per iteration, 100 works for short-run, 20 works for PCD")
parser.add_argument("--width", type=int, default=10, help="WRN width parameter")
parser.add_argument("--depth", type=int, default=28, help="WRN depth parameter")
parser.add_argument("--uncond", action="store_true", help="If set, then the EBM is unconditional")
parser.add_argument("--class_cond_p_x_sample", action="store_true",
help="If set we sample from p(y)p(x|y), othewise sample from p(x),"
"Sample quality higher if set, but classification accuracy better if not.")
parser.add_argument("--buffer_size", type=int, default=10000)
parser.add_argument("--reinit_freq", type=float, default=.05)
parser.add_argument("--sgld_lr", type=float, default=1.0)
parser.add_argument("--sgld_std", type=float, default=1e-2)
# logging + evaluation
parser.add_argument("--save_dir", type=str, default='./experiment')
parser.add_argument("--ckpt_every", type=int, default=10, help="Epochs between checkpoint save")
parser.add_argument("--eval_every", type=int, default=1, help="Epochs between evaluation")
parser.add_argument("--print_every", type=int, default=100, help="Iterations between print")
parser.add_argument("--load_path", type=str, default=None)
parser.add_argument("--print_to_log", action="store_true", help="If true, directs std-out to log file")
parser.add_argument("--plot_cond", action="store_true", help="If set, save class-conditional samples")
parser.add_argument("--plot_uncond", action="store_true", help="If set, save unconditional samples")
parser.add_argument("--n_valid", type=int, default=5000)
args = parser.parse_args()
args.n_classes = 100 if args.dataset == "cifar100" else 10
main(args)