-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifier_CIFAR10.py
85 lines (62 loc) · 2.77 KB
/
Classifier_CIFAR10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Adapted from https://github.com/adambielski/siamese-triplet
# --- HYPERPARAMETERS ---
batch_size = 128
n_epochs = 100
# log every x batches
log_interval = 100
# Convnet hyperparameters
lr = 1e-3
input_depth = 3
layer1_stride = 1
layer1_kernel_size = 6
layer1_output_channels = 256
layer1_padding = 0
visualize_filter = False
# Number of examples to visualize and see how the network embeds
visualize_model_working = 0
from torchvision.datasets import CIFAR10
from torchvision import transforms
import utils
import torch
import torch.nn as nn
train_dataset = CIFAR10('./data/CIFAR10', train=True, download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
]))
test_dataset = CIFAR10('./data/CIFAR10', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
]))
cuda = torch.cuda.is_available()
kwargs = {'num_workers': 4, 'pin_memory': True} if cuda else {}
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False, **kwargs)
from torch.optim import lr_scheduler
import torch.optim as optim
from trainer import fit, fit_classifier
from networks import EmbeddingNet, TripletNet, OnlineTripletNet, ClassifierCNN
inputs, classes = next(iter(train_loader))
input_size = inputs.shape[2]
output_size = 10
model = ClassifierCNN(input_size=input_size, input_depth=input_depth,
layer1_stride=layer1_stride,
layer1_kernel_size=layer1_kernel_size,
layer1_output_channels=layer1_output_channels,
layer1_padding=layer1_padding,
output_size=output_size)
if cuda:
model.cuda()
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# learning rate decay over epochs
scheduler = lr_scheduler.StepLR(optimizer, n_epochs // 1.5, gamma=0.1, last_epoch=-1)
fit_classifier(train_loader, test_loader, model, loss_fn, optimizer, scheduler, n_epochs, cuda, log_interval, visualize_workings=visualize_model_working)
if visualize_filter:
filename = "visualization_CIFAR10"
# Reset
open(filename, 'w').close()
for filter in list(model.convnet.parameters())[0]:
filter = utils.normalize_01(filter)
utils.save_image_visualization(filter.detach().cpu().numpy(), filename=filename)