forked from MarcusOlivecrona/REINVENT
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_prior.py
executable file
·93 lines (73 loc) · 3.38 KB
/
train_prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python
import torch
from torch.utils.data import DataLoader
import pickle
from rdkit import Chem
from rdkit import rdBase
from tqdm import tqdm
from data_structs import MolData, Vocabulary
from model import RNN
from utils import Variable, decrease_learning_rate
rdBase.DisableLog('rdApp.error')
def pretrain(restore_from=None, save_to="data/Prior.ckpt", data="data/mols_filtered.smi", voc_file="data/Voc", batch_size=128, learning_rate=0.001, n_epochs=5, store_loss_dir=None, embedding_size=32):
"""Trains the Prior RNN"""
# Read vocabulary from a file
voc = Vocabulary(init_from_file=voc_file)
# Create a Dataset from a SMILES file
moldata = MolData(data, voc)
data = DataLoader(moldata, batch_size=batch_size, shuffle=True, drop_last=True,
collate_fn=MolData.collate_fn)
Prior = RNN(voc, embedding_size)
# Adding a file to log loss info
if store_loss_dir is None:
out_f = open("loss.csv", "w")
else:
out_f = open("{}/loss.csv".format(store_loss_dir.rstrip("/")), "w")
out_f.write("Step,Loss\n")
# Can restore from a saved RNN
if restore_from:
Prior.rnn.load_state_dict(torch.load(restore_from))
# For later plotting the loss
training_step_counter = 0
n_logging = 100
optimizer = torch.optim.Adam(Prior.rnn.parameters(), lr = learning_rate)
for epoch in range(1, n_epochs+1):
# When training on a few million compounds, this model converges
# in a few of epochs or even faster. If model sized is increased
# its probably a good idea to check loss against an external set of
# validation SMILES to make sure we dont overfit too much.
for step, batch in tqdm(enumerate(data), total=len(data)):
# Sample from DataLoader
seqs = batch.long()
# Calculate loss
log_p, _ = Prior.likelihood(seqs)
loss = - log_p.mean()
# Calculate gradients and take a step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Logging the loss to a file
if training_step_counter % n_logging == 0:
out_f.write("{},{}\n".format(step,loss))
training_step_counter += 1
# Every 500 steps we decrease learning rate and print some information
if step % 500 == 0 and step != 0:
decrease_learning_rate(optimizer, decrease_by=0.03)
tqdm.write("*" * 50)
tqdm.write("Epoch {:3d} step {:3d} loss: {:5.2f}\n".format(epoch, step, loss.data))
seqs, likelihood, _ = Prior.sample(128)
valid = 0
for i, seq in enumerate(seqs.cpu().numpy()):
smile = voc.decode(seq)
if Chem.MolFromSmiles(smile):
valid += 1
if i < 5:
tqdm.write(smile)
tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs)))
tqdm.write("*" * 50 + "\n")
torch.save(Prior.rnn.state_dict(), save_to)
# Save the Prior
torch.save(Prior.rnn.state_dict(), save_to)
f_out.close()
if __name__ == "__main__":
pretrain(save_to="../models/Prior_chembl_p2x7.ckpt", data="../datasets/filtered/chembl23_training_p2x7.smi", voc_file="../vocabularies/Voc_joined", batch_size=64)