-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_multi.py
620 lines (501 loc) · 24.9 KB
/
train_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
import torch
torch.manual_seed(0)
torch.backends.cudnn.deterministic=True
import os
import csv
import numpy as np
np.random.seed(0)
import time
import torch.nn as nn
from glob import glob
import visdom
from visdom_scripts.vis import VisdomLinePlotter
from argparse import ArgumentParser
from scipy.stats import pearsonr
import random
random.seed(0)
import sys
from statistics import stdev, mean
class TransformerBlock(nn.Module):
def __init__(self, d_model, nhead, num_layers, dim_feedforward, dropout_rate=0):
super(TransformerBlock, self).__init__()
self.multi_head_attention = nn.MultiheadAttention(d_model, nhead)
self.layer_norm1 = nn.LayerNorm(d_model)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, dim_feedforward),
nn.ReLU(),
nn.Dropout(dropout_rate),
nn.Linear(dim_feedforward, d_model)
)
self.layer_norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout_rate)
self.dropout2 = nn.Dropout(dropout_rate)
def forward(self, x):
# Multi-Head Attention
attn_output, _ = self.multi_head_attention(self.layer_norm1(x), self.layer_norm1(x), self.layer_norm1(x))
x = x + self.dropout1(attn_output)
# Feed Forward
ff_output = self.feed_forward(self.layer_norm2(x))
x = x + self.dropout2(ff_output)
return x
class TransformerModel(nn.Module):
def __init__(self, input_channels=1940, num_classes=1, dropout=90, d_model=512, nhead=8, num_layers=6,dim_feedforward=2048):
super(TransformerModel, self).__init__()
self.embedding = nn.Linear(input_channels, d_model)
self.transformer_blocks = nn.ModuleList(
[TransformerBlock(d_model, nhead, num_layers, dim_feedforward, dropout/100) for _ in range(num_layers)]
)
self.dense_layers = nn.Sequential(
nn.Linear(d_model, d_model),
# Add more dense layers if necessary
nn.Dropout(dropout/100),
nn.Linear(d_model, num_classes)
)
self.dropout = nn.Dropout(dropout/100)
def forward(self, x):
x = self.embedding(x)
x = x.unsqueeze(0) # Add a batch dimension
for block in self.transformer_blocks:
x = block(x)
x = self.dense_layers(x)
return x.squeeze(0)
class FC(nn.Module):
def __init__(self, input_channels=1, num_classes=1, dropout=90):
super(FC, self).__init__()
self.decoder = nn.Sequential(
nn.Linear(input_channels, 4096),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Linear(4096, 2048),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Linear(512, 256),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Linear(128, num_classes),
)
def forward(self, x):
x = self.decoder(x)
return x
class CNN(nn.Module):
def __init__(self, input_channels=1, num_classes=1, dropout=90):
super(CNN, self).__init__()
self.encoder = nn.Sequential(
nn.Conv1d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Conv1d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Conv1d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2),
nn.ReLU(),
nn.Dropout(dropout/100),
nn.Conv1d(in_channels=64, out_channels=100, kernel_size=5, stride=1, padding=2),
)
self.decoder = nn.Sequential(
nn.Linear(100 * input_channels, 100),
nn.Dropout(dropout/100),
nn.Linear(100, 64),
nn.Dropout(dropout/100),
nn.Linear(64, num_classes),
)
def forward(self, x):
# Input shape: batch_size x 500
# Reshape for 1D-CNN: batch_size x 1 x 500
x = x.unsqueeze(1)
x = self.encoder(x)
x = x.view(x.size(0), -1) # flatten
x = self.decoder(x)
return x
def calculate_r(output, truth):
if len(set(output)) == 1:
r = 0
else:
r, _ = pearsonr(output, truth)
return r
def count_params(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# MSE Loss function
def MSE(output, target):
criterion = nn.MSELoss()
return criterion(output,target)
# Return a subject->label mapping for float labels
def get_labels_mapping(f):
result = {}
with open(f, newline='') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
result[row[0]] = float(row[1])
return result
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, folds, dataset_dir='/Users/aritchetchenian/Desktop/graph_cnn', mean=None, stdev=None, output_mean=None, output_stdev=None, standardise_output=False):
# Data structure for storing all items
self.subjects = []
all_names = ['Endurance_AgeAdj', 'GaitSpeed_Comp', 'Dexterity_AgeAdj', 'Strength_AgeAdj', 'PicSeq_AgeAdj', 'CardSort_AgeAdj', 'Flanker_AgeAdj', 'ReadEng_AgeAdj', 'PicVocab_AgeAdj', 'ProcSpeed_AgeAdj', 'ListSort_AgeAdj']
self.labels = [get_labels_mapping('./csvs/' + name + '.csv') for name in all_names]
# Gather subject IDs
subject_ids = []
for fold in folds:
subject_ids += ['/'.join(x.replace('\\', '/').split('/')[-2:]) for x in sorted(glob(dataset_dir + '/fold'+str(fold)+'/*.npy'))]
subject_ids.sort()
# Calculate the mean/stdev
if mean is None:
data = np.array([np.load(dataset_dir + '/' + subject) for subject in subject_ids])
self.mean, self.stdev = np.mean(data,axis=0), np.std(data,axis=0)
#self.labels maps subject_ID to score for each task, i.e. it should have shape 11 x 1206
data = np.array([[self.labels[i][subject.split('/')[-1].split('.')[0]] for i in range(len(self.labels))] for subject in subject_ids])
self.output_mean, self.output_stdev = np.mean(data,axis=0), np.std(data,axis=0)
else:
self.mean, self.stdev = mean, stdev
self.output_mean, self.output_stdev = output_mean, output_stdev
for subject in subject_ids:
# Load the output data and standardise it, if output standardisation is enabled
total_label = np.array([self.labels[i][subject.split('/')[-1].split('.')[0]] for i in range(len(self.labels))])
if standardise_output:
total_label = (total_label - self.output_mean) / (self.output_stdev + 0.00001)
# Load the input data and standardise it
input_vector = np.load(dataset_dir + '/' + subject)
input_vector = (input_vector - self.mean) / (self.stdev + 0.00001)
self.subjects.append([torch.from_numpy(input_vector).float(), torch.tensor(total_label).float()])
def __getitem__(self, idx):
return self.subjects[idx]
def get_stats(self):
return [self.mean, self.stdev, self.output_mean, self.output_stdev]
def __len__(self):
return len(self.subjects)
# Define the arguments
parser = ArgumentParser(description="Arguments for model training.")
parser.add_argument("-b", "--batch_size", help="Batch size.", default=10, type=int)
parser.add_argument("-e", "--epochs", help="Number of epochs.", default=150, type=int)
parser.add_argument("-lr", "--learning_rate", help="Learning rate.", default=1e-3, type=float)
parser.add_argument("-vis", "--vis_mode", help="Presence of this flag enables plotting/visualisation of results.", action='store_true')
parser.add_argument("-s", "--save_name", help="Folder in which to save all results to.", type=str, default="dump")
parser.add_argument("-i", "--input_channels", help="Number of input channels (1 = num SL only, 2 = num SL and FA)", default=1, type=int)
parser.add_argument("-rd", "--results_dir", help="Results directory (no final slash).", type=str, default="./results")
parser.add_argument("-dd", "--dataset_dir", help="Dataset directory (no final slash).", type=str, default="../GraphConnectome/splitted")
parser.add_argument("-g", "--grid_search", help="If doing a grid search, must turn this flag on. It will disable folds and test-set evaluation.", action='store_true')
parser.add_argument("-dr", "--dropout", help="Dropout percentage, e.g. 90", default=50, type=int)
parser.add_argument("-mo", "--model", help="Indicates which model to use (transformer, 1dcnn, fc).", type=str, default="transformer")
parser.add_argument("-st", "--standardise_output", help="Presence of this flag enables standardisation of output data", action='store_true')
args = parser.parse_args()
# Make the results directory if it doesn't exist
if not os.path.exists(args.results_dir):
os.mkdir(args.results_dir)
# Create the results directory
# 'dump' is a special case for rapid prototyping (will override the existing 'dump' files)
if args.save_name != 'dump':
while os.path.exists(args.results_dir + '/' + args.save_name):
args.save_name = input("Already exists. Enter new save name:")
os.mkdir(args.results_dir + '/' + args.save_name)
elif args.save_name == 'dump' and not os.path.exists(args.results_dir + '/dump'):
os.mkdir(args.results_dir + '/dump')
# Print all specified arguments
for arg in vars(args):
print(f"{arg}: {getattr(args, arg)}")
args_string = '_'.join([str(getattr(args, arg)) for arg in vars(args)]) # create string for a unique ID
# Choosing a device (CPU vs. GPU)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
print("Training on: ", device)
# Create the metric lists
test_rs = []
test_all_maes = []
test_maes = []
test_accs = []
test_f1s = []
test_rocs = []
for fold in range(5):
# Create the dataset
train_val_dataset = CustomDataset(dataset_dir=args.dataset_dir, folds=[x for x in range(5) if x != fold], standardise_output=args.standardise_output)
train_mean, train_stdev, train_out_mean, train_out_stdev = train_val_dataset.get_stats()
test_dataset = CustomDataset(dataset_dir=args.dataset_dir, folds=[fold], mean=train_mean, stdev=train_stdev, output_mean=train_out_mean, output_stdev=train_out_stdev, standardise_output=args.standardise_output)
num_train = int(0.75 * len(train_val_dataset))
num_val = len(train_val_dataset) - num_train
train_dataset, valid_dataset = torch.utils.data.random_split(train_val_dataset, [num_train, num_val])
trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
validloader = torch.utils.data.DataLoader(valid_dataset, batch_size=1, shuffle=True, drop_last=True)
testloader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=True, drop_last=True)
# Visdom plotting initialisation
# Can ignore this unless you're interested in visualisations
if args.vis_mode:
vis = visdom.Visdom(server='127.0.0.1', port='1111')
loss_plotter = VisdomLinePlotter(env_name='Age Prediction', viz=vis)
score_plotter = VisdomLinePlotter(env_name='Age Prediction', viz=vis)
train_opts = dict(title='Train Histogram', xtickmin=90, xtickmax=160)
valid_opts = dict(title='Valid Histogram', xtickmin=90, xtickmax=160)
truth_opts = dict(title='Truth Histogram', xtickmin=90, xtickmax=160)
train_win = None
valid_win = None
truth_win = None
# Initialising the model
if args.model.lower() == 'transformer':
model = TransformerModel(input_channels=args.input_channels, dropout=args.dropout, num_classes=11)
elif args.model.lower() == '1dcnn':
model = CNN(input_channels=args.input_channels, dropout=args.dropout, num_classes=11)
elif args.model.lower() == 'fc':
model = FC(input_channels=args.input_channels, dropout=args.dropout, num_classes=11)
else:
print('ERROR: Invalid model.')
sys.exit()
print("PARAMS: %d" %(count_params(model)))
model.to(device)
print(model)
# Initialising the optimiser/scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.1, patience=15)
# Main training/validation loop for the current fold of cross-validation
valid_losses, train_losses = [], []
valid_stats, train_stats = [], []
valid_scores, train_scores = [], []
best_valid_loss = None
lrs = []
for epoch in range(args.epochs):
start_time = time.time()
# Training
model.train()
train_loss = 0
train_count = 0
train_outs = []
train_truths = []
for data, label in trainloader:
# Send data to device
data,label = data.to(device), label.to(device)
# Reset optimizer
optimizer.zero_grad()
# Feed into model
out = model(data)
# Compute and backprop the loss
loss = MSE(out, label)
loss.backward()
# Update the parameters
optimizer.step()
# Store output/metrics
output_data = out.cpu().detach().numpy()
if args.standardise_output:
output_data = output_data * train_out_stdev + train_out_mean
train_outs += list(output_data)
label_data = label.cpu().detach().numpy()
if args.standardise_output:
label_data = label_data * train_out_stdev + train_out_mean
train_truths += list(label_data)
train_loss += loss.item()
train_count += 1
# Validation
model.eval()
valid_loss = 0
valid_count = 0
valid_outs = []
valid_truths = []
with torch.no_grad():
for data, label in validloader:
# Send data to device
data, label = data.to(device), label.to(device)
# Feed into model
out = model(data)
# Calculate loss
loss = MSE(out, label)
# Store output/metrics
output_data = out.cpu().numpy()
if args.standardise_output:
output_data = output_data * train_out_stdev + train_out_mean
valid_outs += list(output_data)
label_data = label.cpu().detach().numpy()
if args.standardise_output:
label_data = label_data * train_out_stdev + train_out_mean
valid_truths += list(label_data)
valid_loss += loss.item()
valid_count += 1
# Step the scheduler and print the current LR
scheduler.step(valid_loss)
curr_lr = optimizer.param_groups[0]['lr']
lrs.append(curr_lr)
print('Current learning rate: %f' % (curr_lr))
train_rs = [calculate_r(list(np.array(train_outs)[:,i]),list(np.array(train_truths)[:,i])) for i in range(len(train_outs[0]))]
valid_rs = [calculate_r(list(np.array(valid_outs)[:,i]),list(np.array(valid_truths)[:,i])) for i in range(len(valid_truths[0]))]
train_outs = list(np.array(train_outs).flatten())
valid_outs = list(np.array(valid_outs).flatten())
train_truths = list(np.array(train_truths).flatten())
valid_truths = list(np.array(valid_truths).flatten())
train_mae = np.mean(np.abs(np.array(train_outs) - np.array(train_truths)))
valid_mae = np.mean(np.abs(np.array(valid_outs) - np.array(valid_truths)))
# Plotting
if args.vis_mode:
# Plot the losses
loss_plotter.plot('score', 'valid loss', 'Metric Curves', epoch, valid_loss/valid_count, yaxis_type='log')
loss_plotter.plot('score', 'train loss', 'Metric Curves', epoch, train_loss/train_count, yaxis_type='log')
loss_plotter.plot('score', 'curr LR', 'Metric Curves', epoch, curr_lr, yaxis_type='log')
# Plot the metrics
for i, item in enumerate(train_rs):
score_plotter.plot('score', 'train R' + str(i), 'Metric Curves', epoch, item, yaxis_type='linear')
for i, item in enumerate(valid_rs):
score_plotter.plot('score', 'valid R' + str(i), 'Metric Curves', epoch, item, yaxis_type='linear')
score_plotter.plot('score', 'train MAE', 'Metric Curves', epoch, train_mae, yaxis_type='linear')
score_plotter.plot('score', 'valid MAE', 'Metric Curves', epoch, valid_mae, yaxis_type='linear')
# Plot the histograms
train_win = vis.histogram(train_outs, win=train_win, opts=train_opts, env='Age Prediction')
valid_win = vis.histogram(valid_outs, win=valid_win, opts=valid_opts, env='Age Prediction')
truth_win = vis.histogram(train_truths + valid_truths, win=truth_win, opts=truth_opts, env='Age Prediction')
# Update metrics
valid_losses.append(valid_loss/valid_count)
train_losses.append(train_loss/train_count)
valid_stats.append([min(valid_outs), max(valid_outs), sum(valid_outs)/len(valid_outs), sum(valid_rs)/len(valid_rs)])
train_stats.append([min(train_outs), max(train_outs), sum(train_outs)/len(train_outs), sum(train_rs)/len(train_rs)])
valid_scores.append([sum(valid_rs)/len(valid_rs), valid_mae] + valid_rs)
train_scores.append([sum(train_rs)/len(train_rs), train_mae] + train_rs)
# Print the current epoch
print(epoch)
# Aggregrate the metrics and save them for the current epoch
metric_save_object = {
'epoch': epoch,
'train_outs': train_outs,
'valid_outs': valid_outs,
'train_r': sum(train_rs)/len(train_rs),
'valid_r': sum(valid_rs)/len(valid_rs),
'train_truths': train_truths,
'valid_truths': valid_truths,
'train_losses': train_losses,
'valid_losses': valid_losses,
'valid_scores': valid_scores,
'train_scores': train_scores,
}
torch.save(metric_save_object, args.results_dir + '/' + args.save_name + '/fold_' + str(fold) + '_current_stats.pth')
# Save the current model if it has the lowest validation loss
update_loss = False
if best_valid_loss is None:
update_loss = True
elif valid_loss/valid_count < best_valid_loss:
update_loss = True
if update_loss:
best_valid_loss = valid_loss / valid_count
# Save the model
save_object = {
# state dicts
'model_state_dict': model.state_dict(),
'optimizer':optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
# useful info
'training_epoch': epoch,
'total_epochs': args.epochs,
'batch_size': args.batch_size,
'lr': args.learning_rate,
'vis_mode': args.vis_mode,
'save_name': args.save_name,
'lrs': lrs,
'input_channels': args.input_channels,
'dataset_dir': args.dataset_dir,
'results_dir': args.results_dir,
'grid_search': args.grid_search,
'dropout': args.dropout,
'train_mean': train_mean,
'train_stdev': train_stdev,
'train_out_mean': train_out_mean,
'train_out_stdev': train_out_stdev,
'standardise_output': args.standardise_output,
# cross-val info
'fold': fold,
# metric info
'train_outs': train_outs,
'valid_outs': valid_outs,
'train_r': sum(train_rs)/len(train_rs),
'valid_r': sum(valid_rs)/len(valid_rs),
'train_truths': train_truths,
'valid_truths': valid_truths,
'train_losses': train_losses,
'valid_losses': valid_losses,
}
torch.save(save_object, args.results_dir + '/' + args.save_name + '/fold_' + str(fold) + '_best_model_checkpoint.pth')
total_time = (time.time() - start_time) / 60
print("%.2f mins per epoch" % (total_time))
print("%.2f mins per 20 epochs" % (total_time * 20))
print('--')
# If performing grid search, stop after the first fold has been trained/validated
if args.grid_search:
break
# Eval on the test fold
checkpoint = torch.load(args.results_dir + '/' + args.save_name + '/fold_' + str(fold) + '_best_model_checkpoint.pth')
if args.model.lower() == 'transformer':
model = TransformerModel(input_channels=args.input_channels, dropout=args.dropout, num_classes=11)
elif args.model.lower() == '1dcnn':
model = CNN(input_channels=args.input_channels, dropout=args.dropout, num_classes=11)
elif args.model.lower() == 'fc':
model = FC(input_channels=args.input_channels, dropout=args.dropout, num_classes=11)
else:
print('ERROR: Invalid model.')
sys.exit()
model.to(device)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
test_loss = 0
test_count = 0
test_outs = []
test_truths = []
with torch.no_grad():
for data, label in testloader:
# Send data to device
data, label = data.to(device), label.to(device)
# Feed into model
out = model(data)
# Calculate loss
loss = MSE(out, label)
# Store output/metrics
output_data = out.cpu().numpy()
if args.standardise_output:
output_data = output_data * train_out_stdev + train_out_mean
test_outs += list(output_data)
label_data = label.cpu().detach().numpy()
if args.standardise_output:
label_data = label_data * train_out_stdev + train_out_mean
test_truths += list(label_data)
test_loss += loss.item()
test_count += 1
test_r_all = [calculate_r(list(np.array(test_outs)[:,i]), list(np.array(test_truths)[:,i])) for i in range(len(test_outs[0]))]
test_r = sum(test_r_all) / len(test_r_all)
test_all_mae = [np.mean(np.abs(np.array(test_outs)[:,i] - np.array(test_truths)[:,i])) for i in range(len(test_outs[0]))]
np.save(args.results_dir + '/' + args.save_name + '/fold' + str(fold) + '_test_outs_not_flattened.npy', np.array(test_outs))
np.save(args.results_dir + '/' + args.save_name + '/fold' + str(fold) + '_test_truths_not_flattened.npy', np.array(test_truths))
test_outs = list(np.array(test_outs).flatten())
test_truths = list(np.array(test_truths).flatten())
test_overall_mae = np.mean(np.abs(np.array(test_outs) - np.array(test_truths)))
np.save(args.results_dir + '/' + args.save_name + '/fold' + str(fold) + '_test_outs.npy', np.array(test_outs))
np.save(args.results_dir + '/' + args.save_name + '/fold' + str(fold) + '_test_truths.npy', np.array(test_truths))
print(test_overall_mae)
print(test_r)
test_maes.append(test_overall_mae)
test_rs.append(test_r_all)
test_all_maes.append(test_all_mae)
if not args.grid_search:
with open(args.results_dir + '/' + args.save_name + '/scores.txt', 'w') as f:
f.write("MAE: %.2f (+- %.2f)\n" % (mean(test_maes), np.std(test_maes, ddof=1)))
test_rs = np.array(test_rs)
task_means = np.mean(test_rs,0)
task_stdevs = np.std(test_rs,0,ddof=1)
fold_means = np.mean(test_rs,1)
fold_stdevs = np.std(test_rs,1,ddof=1)
test_all_maes = np.array(test_all_maes)
task_mae_means, task_mae_stdevs = np.mean(test_all_maes,0), np.std(test_all_maes,0,ddof=1)
fold_mae_means, fold_mae_stdevs = np.mean(test_all_maes,1), np.std(test_all_maes,1,ddof=1)
f.write("\nAll Task Rs (averaged across all folds):\n")
for i, item in enumerate(task_means):
f.write("R%d.: %.2f (+- %.2f)\n" % (i, item, task_stdevs[i]))
f.write("\nAll Task MAEs (averaged across all folds):\n")
for i, item in enumerate(task_mae_means):
f.write("R%d.: %.2f (+- %.2f)\n" % (i, item, task_mae_stdevs[i]))
f.write("\nAll Fold Rs (averaged across all tasks):\n")
for i, item in enumerate(fold_means):
f.write("Fold %d: %.2f (+- %.2f)\n" % (i, item, fold_stdevs[i]))
f.write("\nAll Fold MAEs (averaged across all tasks):\n")
for i, item in enumerate(fold_mae_means):
f.write("Fold %d: %.2f (+- %.2f)\n" % (i, item, fold_mae_stdevs[i]))
f.write("\nAll Fold MAEs:\n")
for item in test_maes:
f.write("%2f," % (item))
f.write("\n\nEpoch: %d" % (checkpoint['training_epoch']))