-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathhmm.py
executable file
·217 lines (183 loc) · 6.14 KB
/
hmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#! /usr/bin/env python
#! -*- coding=utf-8 -*-
# Project: Lihang
# Filename: hmm
# Date: 9/17/18
# Author: 😏 <smirk dot cao at gmail dot com>
import numpy as np
import argparse
import logging
import warnings
class HMM(object):
def __init__(self, n_component=0,
Q=None,
V=None,
n_iters=5):
self.A = None
self.B = None
self.p = None
self.M = 0
self.N = n_component
self.T = 0
self.Q = Q
self.V = V
self.n_iters = n_iters
self.alpha = None
self.beta = None
self.deta = None
self.gamma = None
self.xi = None
self.Ei = None
self.Ei_ = None
self.Ei_j = None
def init_param(self, X):
# 最简单的初始化应该是均匀分布
# 另外的方法是Dirichlet Distribution
# todo: update Dirchlet Distribution
if self.V is not None:
self.M = len(self.V)
else:
warnings.warn("M warning")
self.A = np.ones((self.N, self.N))/self.N
self.B = np.ones((self.N, self.M))/self.M
self.p = np.ones(self.N)/self.N
self.T = len(X)
return self
def _do_forward(self, X):
# todo: logsumexp trick
alpha = np.zeros((self.N, self.T))
# A: NxM
# B: NxM
# alpha: NxT
t = 0
o = X[t]
alpha[:, t] = self.p * self.B[:, o]
t_rest = np.arange(1, self.T)
for t in t_rest:
o = X[t]
alpha[:, t] = np.sum(alpha[:, t-1]*self.A.T, axis=1)*self.B[:, o]
self.alpha = alpha
prob = np.sum(alpha[:, -1])
return prob, alpha
def _do_backward(self, X):
beta = np.ones((self.N, self.T))
t = -1
beta[:, t] = 1
# print(self.A, self.B, self.p, X)
t_rest = np.arange(self.T-1)[::-1]
for t in t_rest:
o = X[t+1]
beta[:, t] = np.sum(self.A*self.B[:, o]*beta[:, t+1], axis=1)
self.beta = beta
prob = np.sum(self.p*self.B[:, X[0]]*beta[:, 0])
# print(beta, prob, prob, "new")
return prob, beta
# 后面这两个主要是为了验证前向后向的结果
def forward(self, obs_seq):
"""前向算法"""
# 来源: https://applenob.github.io/hmm.html
# F保存前向概率矩阵
F = np.zeros((self.N, self.T))
F[:, 0] = self.p * self.B[:, obs_seq[0]]
for t in range(1, self.T):
for n in range(self.N):
F[n, t] = np.dot(F[:, t - 1], (self.A[:, n])) * self.B[n, obs_seq[t]]
return F
def backward(self, obs_seq):
"""后向算法"""
# X保存后向概率矩阵
# 来源: https://applenob.github.io/hmm.html
X = np.zeros((self.N, self.T))
X[:, -1:] = 1
for t in reversed(range(self.T - 1)):
X[:, t] = np.sum(self.A * self.B[:, obs_seq[t + 1]]*X[:, t + 1], axis=1)
prob = np.sum(self.p * self.B[:, 0] * X[:, 0])
# print(prob)
return X
def _do_estep(self, X):
# 在hmmlearn里面是会没有专门的estep的
_, self.alpha = self._do_forward(X)
_, self.beta = self._do_backward(X)
post_prior = self.alpha*self.beta
# Eq. 10.24
self.gamma = post_prior/np.sum(post_prior)
# Eq. 10.26
left_a = self.alpha
right_a = np.dot(self.B, np.eye(len(X))[X, :len(set(X))].T)*self.beta
trans_post_prior = np.array([x*self.A*y for x, y in zip(left_a[:, :-1].T, right_a[:, 1:].T)])
self.xi = trans_post_prior/np.sum(trans_post_prior)
# Eq. 10.27
self.Ei = np.sum(self.gamma, axis=1)
# Eq. 10.28
self.Ei_ = np.sum(self.gamma[:, :-1], axis=1)
# Eq. 10.29
self.Ei_j = np.sum(self.xi[:, :, :-1], axis=2)
return self
def _do_mstep(self, X):
# Eq. 10.39
self.A = self.Ei_j/self.Ei
# Eq. 10.40
gamma_o = np.array([np.outer(x, y) for x, y in zip(self.gamma.T, np.eye(len(X))[X, :len(set(X))].T)])
self.B = np.sum(gamma_o, axis=2).T/self.Ei.reshape(-1, 1)
# Eq. 10.41
self.p = self.gamma[:, 0]
return self
def fit(self, X):
# 估计模型参数
self.init_param(X)
for n_iter in range(self.n_iters):
self._do_estep(X)
self._do_mstep(X)
# convergence check
# if False:
# return rst
return self
def decode(self, X):
"""
Find most likely state sequence corresponding to ``X``.
"""
if self.T == 0:
warnings.warn("T warning")
if self.N == 0:
warnings.warn("N warning")
hidden_states = np.zeros(self.T)
delta = np.ones((self.N, self.T))
psi = np.zeros((self.N, self.T))
t = 0
o = X[t]
delta[:, t] = self.p*self.B[:, o]
psi[:, t] = 0
t_rest = np.arange(1, self.T)
for t in t_rest:
o = X[t]
delta[:, t] = np.max(delta[:, t-1]*self.A.T, axis=1)*self.B[:, o]
psi[:, t] = np.argmax(delta[:, t-1]*self.A.T, axis=1)
self.delta = delta
prob = np.max(delta[:, -1])
hidden_states[-1] = np.argmax(delta[:, -1])
# t in T-1,...,1
t_rest = np.arange(self.T-1)[::-1]
for t in t_rest:
hidden_states[t] = np.argmax(delta[:, t]*self.A[:, int(hidden_states[t+1])], axis=0)
return prob, hidden_states
def predict(self, X):
"""
Find most likely state sequence corresponding to ``X``.
"""
_, states = self.decode(X)
return states
def predict_proba(self):
post_prior = 0
return post_prior
def sample(self):
rst = None
return rst
def score(self):
rst = None
return rst
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--path", required=False, help="path to input data file")
args = vars(ap.parse_args())