-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathunit_test.py
executable file
·270 lines (247 loc) · 10.4 KB
/
unit_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#! /usr/bin/env python
#! -*- coding=utf-8 -*-
# Project: Lihang
# Filename: unit_test
# Date: 9/11/18
# Author: 😏 <smirk dot cao at gmail dot com>
from hmm import *
import numpy as np
import pandas as pd
import logging
import unittest
class TestHHMMethods(unittest.TestCase):
# @unittest.skip("EM only")
def test_e101(self):
logger.info("Exercise 10.1")
raw_data = pd.read_csv("./Input/data_10-1.txt", header=0, index_col=0)
# print(raw_data)
# print(list(raw_data.columns), list(raw_data.index))
O = [0, 0, 1, 1, 0]
# 以上为已知
T= len(O)
Q = set(raw_data.columns[-1-len(raw_data):-1])
N = len(Q)
V = set(raw_data.columns[:-1-len(raw_data)])
M = len(V)
A = raw_data[raw_data.columns[-1-len(raw_data):-1]].values
B = raw_data[raw_data.columns[:-1 - len(raw_data)]].values
B = B / np.sum(B, axis=1).reshape((-1, 1))
if raw_data[["pi"]].apply(np.isnan).values.flatten().sum() > 1:
pi = [1/raw_data[["pi"]].apply(np.isnan).values.flatten().sum()]*N
logger.info("\nT\n%s\nA\n%s\nB\n%s\npi\n%s\nM\n%s\nN\n%s\nO\n%s\nQ\n%s\nV\n%s"
% (T, A, B, pi, M, N, O, Q, V))
pass
# @unittest.skip("EM only")
def test_e102(self):
logger.info("Exercise 10.2")
raw_data = pd.read_csv("./Input/data_10-2.txt", header=0, index_col=0, na_values="None")
O = [0, 1, 0]
# 以上为已知
T= len(O)
Q = set(raw_data.columns[-1-len(raw_data):-1])
N = len(Q)
V = set(raw_data.columns[:-1-len(raw_data)])
M = len(V)
A = raw_data[raw_data.columns[-1-len(raw_data):-1]].values
B = raw_data[raw_data.columns[:-1 - len(raw_data)]].values
B = B / np.sum(B, axis=1).reshape((-1, 1))
if raw_data[["pi"]].apply(np.isnan).values.flatten().sum() > 1:
pi = [raw_data[["pi"]].apply(np.isnan).values.flatten().sum()]*N
else:
pi = raw_data[["pi"]].values.flatten()
logger.info("\nT\n%s\nA\n%s\nB\n%s\npi\n%s\nM\n%s\nN\n%s\nO\n%s\nQ\n%s\nV\n%s"
% (T, A, B, pi, M, N, O, Q, V))
# forward
logger.info(pi*B[..., O[0]])
logger.info(np.dot(pi*B[..., O[0]], A)*B[..., O[1]])
logger.info(np.dot(np.dot(pi*B[..., O[0]], A)*B[..., O[1]], A)*B[..., O[2]])
logger.info(np.sum(np.dot(np.dot(pi*B[..., O[0]], A)*B[..., O[1]], A)*B[..., O[2]]))
# backward
logger.info(np.dot(A, B[..., O[2]]))
# @unittest.skip("EM only")
def test_e103(self):
logger.info("Exercise 10.3")
raw_data = pd.read_csv("./Input/data_10-2.txt", header=0, index_col=0, na_values="None")
O = [0, 1, 0]
# 以上为已知
T= len(O)
Q = set(raw_data.columns[-1-len(raw_data):-1])
N = len(Q)
V = set(raw_data.columns[:-1-len(raw_data)])
M = len(V)
A = raw_data[raw_data.columns[-1-len(raw_data):-1]].values
B = raw_data[raw_data.columns[:-1 - len(raw_data)]].values
B = B / np.sum(B, axis=1).reshape((-1, 1))
if raw_data[["pi"]].apply(np.isnan).values.flatten().sum() > 1:
pi = [raw_data[["pi"]].apply(np.isnan).values.flatten().sum()]*N
else:
pi = raw_data[["pi"]].values.flatten()
logger.info("\nT\n%s\nA\n%s\nB\n%s\npi\n%s\nM\n%s\nN\n%s\nO\n%s\nQ\n%s\nV\n%s"
% (T, A, B, pi, M, N, O, Q, V))
hmm_e103 = HMM(n_component=3)
hmm_e103.A = A
hmm_e103.B = B
hmm_e103.p = pi
hmm_e103.N = N
hmm_e103.T = T
hmm_e103.M = M
prob, states = hmm_e103.decode(O)
# p_star
self.assertAlmostEqual(0.0147, prob, places=5)
self.assertSequenceEqual([2, 2, 2], states.tolist())
logger.info("P star is %s, I star is %s" % (prob, states))
# print("参考答案")
# print(np.array([[0.1, 0.028, 0.00756],
# [0.016, 0.0504, 0.01008],
# [0.28, 0.042, 0.0147]]))
# print("程序结果")
# print(delta)
def test_forward(self):
# 10.2 数据
Q = {0: 1, 1: 2, 2: 3}
V = {0: "red", 1: "white"}
hmm_forward = HMM(n_component=3)
hmm_forward.A = np.array([[0.5, 0.2, 0.3],
[0.3, 0.5, 0.2],
[0.2, 0.3, 0.5]])
hmm_forward.B = np.array([[0.5, 0.5],
[0.4, 0.6],
[0.7, 0.3]])
hmm_forward.p = np.array([0.2, 0.4, 0.4])
X = np.array([0, 1, 0])
hmm_forward.T = len(X)
prob, alpha = hmm_forward._do_forward(X)
alpha_true = np.array([[0.10, 0.077, 0.04187],
[0.16, 0.1104, 0.03551],
[0.28, 0.0606, 0.05284]])
self.assertAlmostEqual(prob, 0.13022, places=5)
for x, y in zip(alpha_true.flatten().tolist(), alpha.flatten().tolist()):
self.assertAlmostEqual(x, y, places=5)
# @unittest.skip("EM only")
def test_backward(self):
# 10.2 数据
Q = {0: 1, 1: 2, 2: 3}
V = {0: "red", 1: "white"}
hmm_backward = HMM(n_component=3)
hmm_backward.A = np.array([[0.5, 0.2, 0.3],
[0.3, 0.5, 0.2],
[0.2, 0.3, 0.5]])
hmm_backward.B = np.array([[0.5, 0.5],
[0.4, 0.6],
[0.7, 0.3]])
hmm_backward.p = np.array([0.2, 0.4, 0.4])
X = np.array([0, 1, 0])
hmm_backward.T = len(X)
prob, alpha = hmm_backward._do_backward(X)
alpha_true = np.array([[0.10, 0.077, 0.04187],
[0.16, 0.1104, 0.03551],
[0.28, 0.0606, 0.05284]])
self.assertAlmostEqual(prob, 0.13022, places=5)
# @unittest.skip("EM only")
def test_bkw_frw(self):
# 并没有实际的测试内容
Q = {0: 1, 1: 2, 2: 3}
V = {0: "red", 1: "white"}
hmm_forward = HMM(n_component=3)
hmm_forward.A = np.array([[0.5, 0.2, 0.3],
[0.3, 0.5, 0.2],
[0.2, 0.3, 0.5]])
hmm_forward.B = np.array([[0.5, 0.5],
[0.4, 0.6],
[0.7, 0.3]])
hmm_forward.p = np.array([0.2, 0.4, 0.4])
X = np.array([0, 1, 0])
hmm_forward.T = len(X)
beta = hmm_forward.backward(X)
alpha = hmm_forward.forward(X)
logger.info("%s \n %s" % (alpha, beta))
# @unittest.skip("")
def test_EM(self):
logger.info("test EM")
V = {0: "red", 1: "white"}
hmm_fit = HMM(n_component=3, V=V)
X = np.array([0, 1, 0, 0])
hmm_fit.fit(X)
# prob, states = hmm_fit.decode([0, 1, 0, 0])
logger.info(hmm_fit.A)
logger.info(hmm_fit.B)
logger.info(hmm_fit.p)
# logger.info("prob %s " % prob)
# logger.info("states %s" % states)
def test_q101(self):
# 和 backward结果一致
# 10.1
Q = {0: 1, 1: 2, 2: 3}
V = {0: "red", 1: "white"}
hmm_backward = HMM(n_component=3, V=V)
hmm_backward.A = np.array([[0.5, 0.2, 0.3],
[0.3, 0.5, 0.2],
[0.2, 0.3, 0.5]])
hmm_backward.B = np.array([[0.5, 0.5],
[0.4, 0.6],
[0.7, 0.3]])
hmm_backward.p = np.array([0.2, 0.4, 0.4])
X = np.array([0, 1, 0, 1])
hmm_backward.T = len(X)
# beta = hmm_backward.backward(X)
prob, beta = hmm_backward._do_backward(X)
logger.info("----q101----")
logger.info(prob)
logger.info(beta)
# alpha_true = np.array([[0.10, 0.077, 0.04187],
# [0.16, 0.1104, 0.03551],
# [0.28, 0.0606, 0.05284]])
# self.assertAlmostEqual(prob, 0.13022, places=5)
def test_q102(self):
# 这个题目, 意义在哪里?
logger.info("----q102----")
# 10.2
Q = {0: 1, 1: 2, 2: 3}
V = {0: "red", 1: "white"}
hmm_backward = HMM(n_component=3, V=V)
hmm_backward.A = np.array([[0.5, 0.1, 0.4],
[0.3, 0.5, 0.2],
[0.2, 0.2, 0.6]])
hmm_backward.B = np.array([[0.5, 0.5],
[0.4, 0.6],
[0.7, 0.3]])
hmm_backward.p = np.array([0.2, 0.3, 0.5])
X = np.array([0, 1, 0, 0, 1, 0, 1, 1])
hmm_backward.T = len(X)
prob, states = hmm_backward.decode(X)
prob_fwd, _ = hmm_backward._do_forward(X)
prob_bwd, _ = hmm_backward._do_backward(X)
logger.info("decode prob %s, forward prob %s, backward prob %s" % (prob, prob_fwd, prob_bwd))
logger.info(states)
logger.info("alpha\n %s" % hmm_backward.alpha)
logger.info("beta\n%s" % hmm_backward.beta)
logger.info("delta\n%s" % hmm_backward.delta)
def test_q103(self):
# 10.3
Q = {0: 1, 1: 2, 2: 3, 3:4}
V = {0: "red", 1: "white"}
hmm_backward = HMM(n_component=4, V=V)
hmm_backward.A = np.array([[0, 1, 0, 0],
[0.4, 0, 0.6, 0],
[0, 0.4, 0, 0.6],
[0, 0, 0.5, 0.5]])
hmm_backward.B = np.array([[0.5, 0.5],
[0.3, 0.7],
[0.6, 0.4],
[0.8, 0.2]])
hmm_backward.p = np.array([0.25, 0.25, 0.25, 0.25])
X = np.array([0, 0, 1, 1, 0])
hmm_backward.T = len(X)
prob, states = hmm_backward.decode(X)
prob_fwd, _ = hmm_backward._do_forward(X)
prob_bwd, _ = hmm_backward._do_backward(X)
logger.info("----q103----")
logger.info("decode prob %s, forward prob %s, backward prob %s" % (prob, prob_fwd, prob_bwd))
logger.info(states)
logger.info("alpha\n %s" % hmm_backward.alpha)
logger.info("beta\n%s" % hmm_backward.beta)
logger.info("delta\n%s" % hmm_backward.delta)
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
unittest.main()